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Abstract

The goal of many sciences is to understand the mechanisms by which variables came to take on
the values they have (that is, to find a generative model), andto predict what the values of those
variables would be if the naturally occurring mechanisms were subject to outside manipulations.
The past 30 years has seen a number of conceptual developments that are partial solutions to the
problem of causal inference from observational sample dataor a mixture of observational sample
and experimental data, particularly in the area of graphical causal modeling. However, in many do-
mains, problems such as the large numbers of variables, small samples sizes, and possible presence
of unmeasured causes, remain serious impediments to practical applications of these developments.
The articles in the Special Topic on Causality address theseand other problems in applying graphi-
cal causal modeling algorithms. This introduction to the Special Topic on Causality provides a brief
introduction to graphical causal modeling, places the articles in a broader context, and describes the
differences between causal inference and ordinary machinelearning classification and prediction
problems.
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1. Introduction

The goal of many sciences is to understand the mechanisms by which variables came to take on
the values they have (that is, to find a generative model), and to predict what the values of those
variables would be if the naturally occurring mechanisms were subject to outside manipulations.
For example, a randomized experiment is one kind of manipulation that substitutes the outcome
of a randomizing device to set the value of a variable (for example, whetheror not a particular
new medication is given to a patient who has agreed to participate in a drug trial)in place of the
naturally occurring mechanism that determines the variable’s value. In non-experimental settings,
biologists gather data about the gene activation levels in normally functioning systems in order
to understand which genes affect the activation levels of which other genes, and to predict what
the effects of manipulating the system to turn some genes on or off would be. Epidemiologists
gather data about dietary habits and life expectancy in the general population and seek to find what
dietary factors affect life expectancy and predict the effects of advising people to change their diets.
Finding answers to questions about the mechanisms by which variables come totake on values, or
predicting the value of a variable after some other variable has been manipulated, is characteristic of
causal inference. If only non-experimental data are available, predicting the effects of manipulations
typically involves drawing samples from one probability density (in the unmanipulated population)
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and making inferences about the values of a variable in a population that has a different probability
density (in the manipulated population).

The rapid spread of interest in the last three decades in principled methodsof search or esti-
mation of causal relations has been driven in part by technological developments, especially the
changing nature of modern data collection and storage techniques, and theincreases in the process-
ing power and storage capacities of computers. Statistics books from 30 years ago often presented
examples with fewer than 10 variables, in domains where some background knowledge was plau-
sible. In contrast, in new domains such as climate research (where satellite data now provide daily
quantities of data unthinkable a few decades ago), fMRI brain imaging, andmicroarray measure-
ments of gene expression, the number of variables can range into the tens of thousands, and there
is often limited background knowledge to reduce the space of alternative causal hypotheses. Even
when experimental interventions are possible, performing the many thousands of experiments that
would be required to discover causal relationships between thousands or tens of thousands of vari-
ables is often not practical. In such domains, non-automated causal discovery techniques from
sample data, or sample data together with a limited number of experiments, appearsto be hopeless,
while the availability of computers with increased processing power and storage capacity allow for
the practical implementation of computationally intensive automated search algorithms over large
search spaces.

The past 30 years has also seen a number of conceptual developments that are partial solutions
to these causal inference problems, particularly in the area of graphicalcausal modeling. Sections
3 and 4 of this paper describe some of these developments: a variety of welldefined mathematical
objects to represent causal relations (for example, directed acyclic graphs); well defined connec-
tions between aspects of these objects and sample data (for example, the Causal Markov and Causal
Faithfulness Assumptions); ways to compute those connections (for example, d-separation); and a
theory of representation and calculation of the effects of manipulations (for example, by breaking
edges in a graph); and search algorithms (for example, the PC algorithm). However, in many do-
mains, problems such as the large numbers of variables, small samples sizes,and possible presence
of unmeasured causes, remain serious impediments to practical applications ofthese developments.

The articles in the Special Topic on Causality (containing articles from 2007 to2009) address
these and other problems in making causal inferences. Although there aresome superficial simi-
larities between traditional supervised machine learning problems and causal inference (for exam-
ple, both employ model search and feature selection, the kinds of models employed overlap, some
model scores can be used for both purposes), these similarities can mask some very important dif-
ferences between the two kinds of problems. This introduction to the Special Topic on Causality
provides a brief introduction to graphical causal modeling, places the articles in a broader context,
and describes the differences between causal inference and ordinary machine learning classification
or prediction problems; it is not intended to provide a broad overview or a tutorial surveying all
methods of causal inference.

Section 2 describes the problem of causal inference in more detail, and differentiates it from the
typical machine learning supervised classification or prediction problem; Section 3 describes several
different kinds of causal models; Section 4 describes some problems associated with search for
causal models, and why algorithms appropriate for the discovery of goodclassification or prediction
models in machine learning are not always appropriate for the discovery of good causal models; and
Section 5 describes some major open problems in the field. The various articlesin the Special Topic
on Causality are described throughout this article, depending upon whichtopic they address.
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2. Manipulating Versus Conditioning

This section will describe three different kinds of problems (one typical machine learning or statis-
tical problem, and two kinds of causal problems), and three different kinds of probability densities
(conditional, manipulated, and counterfactual) that are useful for solving the problems.

2.1 Conditional Probabilities

Suppose that there is a population of individuals with the following random variables at timet: rwt

is the average number of glasses of red wine consumed per day in the 5 years prior tot, bmit is the
body mass index of a person at timet, sext is the person’s sex (0 = male, 1 = female) at timet, and
hat is whether or not an individual had a heart attack in the 5 years prior tot. Sincesext is rarely
time-dependent, it will be replaced simply bysex.

Suppose an insurance company at timet wants to determine what rates to charge an individual
for health insurance who hasrwt = 1, bmit = 25, andsex= 0, and that this rate is partly based on
the probability of the individual having a heart attack in the next 5 years. This can be estimated by
using the rate of heart attacks among the subpopulation matching the subject, that isrwt = 1, bmit =
25,sex= 0. It is impossible to measure the values ofhat+5 at timet, because they haven’t occurred
yet, but if the probability density is stable across time, the density ofhat+5 among the subset of the
population withrwt = 1, bmit = 25, andsex= 0 will be the same as the density ofhat among the
subpopulation for whichrwt–5 = 1, bmit–5 = 25, andsex= 0. The density in a subpopulation is a
conditional density, in this caseP(hat | rwt–5 = 1, bmit–5 = 25,sex= 0).

Conditioning maps a given joint density, and a given subpopulation (typicallyspecified by a set
of values for random variables) into a new density. The conditional density is a function of the joint
density over the random variables, and a set of values for a set of random variables.1 The estimation
of a conditional probability is often non-trivial because the number of people with rwt–5 = 1,bmit–5

= 25,sex= 0 might be small. A large part of statistics and machine learning is devoted to estimating
conditional probabilities from realistic sample sizes under a variety of assumptions.

If the insurance company is not attempting to change anyone’s behavior then the question of
whether drinking the right amount of red winepreventsheart attacks is irrelevant to their concerns;
the only relevant question is whether the amount of red wine that someone drinks predictsheart
attack rates. It is possible that people who drink an average of between 1and 2 glasses of red wine
per day for 5 years have lowered rates of heart attacks because of socio-economic factors that both
cause average daily consumption of red wine and other life-style factors that prevent heart attacks.
But even if moderate red wine consumption does not prevent heart attacks, the insurance company
can still use the conditional probability to help determine the rates to charge.

If X is a set of measured variables, the conditional probability densityP(Y| X) is not only useful
for predicting future values ofY, it is also useful for predicting current unmeasured values ofY,
and for classifying individuals in cases whereY is categorical.

Problem 1: Predictive Modeling
Input: Samples from a densityP(O) (whereO is a set of observed random variables), and
two sets of variablesX, Y ⊆ O.
Output: A consistent, efficient estimate ofP(Y | X).

1. In order to avoid technicalities, I will assume that the set of values conditioned on do not have measure 0.
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2.2 Manipulated Probabilities

In contrast to the previous case, suppose that an epidemiologist is deciding whether or not to recom-
mend providing very strong incentives for adults to drink an average of 1to 2 glasses of red wine
per day in order to prevent heart attacks. Suppose further that if adopted the incentives will be very
widely effective. The density of heart attacks observationallyconditionalon drinking an average
of 1 to 2 glasses of red wine per day is not the density relevant to answering this question, and the
question of whether drinking red wine prevents heart attacks is crucial. Suppose drinking red wine
does not prevent heart attacks, but the heart attack rate is lower amongmoderate red wine drinkers
because some socio-economic variable causes both moderate red wine drinking and other healthy
life-styles choices that prevent heart attacks. In that case, after the incentives to drink red wine are
in place, the density of socioeconomic status among red wine drinkers will be different than prior
to the incentives, and the conditional density of heart attacks among moderatered wine drinkers
will not be the same after the incentives were adopted as prior to their adoption. Thus, using ob-
servational conditional densities to predict heart attacks after the incentives are in place will lead to
incorrect predictions.

The density that is relevant to determining whether or not to recommend drinking a moderate
amount of red wine is not the density of heart attacks among people who have chosen to drink red
wine (choice being the mechanism for determining red wine consumption in the unmanipulated
population), but the density of heart attacks among people who would drinkred wine after the
incentives are in place. If the incentives are very effective, the density of heart attacks among
people who would drink red wine after the incentives are in place is approximately equal to the
density of heart attacks among people who are assigned to drink moderate amounts of red wine in
an experimental study.

The density of heart attacks among people who have beenassignedto drink red wine (as op-
posed to those who havechosento drink red wine, as is currently the case) is amanipulateddensity,
that results from taking action on a given population - it may or may not be equal to any observa-
tional conditional density, depending upon what the causal relations between variables are. Manip-
ulated probability densities are the appropriate probability densities to use when making predictions
about the effects of taking actions (“manipulating” or “doing”) on a givenpopulation (for example,
assigning red wine drinking), rather than observing (“seeing”) the values of given variables. Ma-
nipulated probabilities are the probabilities that are implicitly used in decision theory, where the
different actions under consideration are manipulations.2

A simple form of manipulation specifies what new densityP’ is assigned to some variable in
a population at a given time. For example, forcing everyone in an (adult) population to drink an
average of 1 glass of red wine daily fromt–10 to t–5, assignsP’(rwt–5 = 1) = 1. (Sincerwt–5

measures red wine drinking for the past 5 years, an intervention onrwt–5 begins att–10.) After
this density has been assigned, there is a resulting joint density for the random variables at time
t, denoted byP(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || P’(rwt–5 = 1) = 1), where the double bar
indicates the density that has been assigned torwt–5, in this case that everyone has been assigned the
valuerwt–5 = 1.3 This is in contrast to the conditional densityP(sex, bmit-5, hat-5, rwt-5, bmit, hat,

2. The use of manipulated probability densities in decision theory is often notexplicit. The assumption that the den-
sity of states of nature are independent of the actions taken (act-state independence) is one way to ensure that the
manipulated densities that are needed are equal to observed conditionaldensities that can be measured.

3. There is no completely standard notation for denoting a manipulated density. This notation is adapted from Lauritzen
(1999).
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rwt | rwt–5 = 1), which is the density of the variables in the subpopulation whererwt–5 = 1 because
people have been observed to drink that amount of red wine, as in the unmanipulated population.

P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || P’(rwt–5 = 1) = 1) is a density, so it is possible to form
marginal and conditional probability densities from it. For example,P(hat | bmit–5 = 25 || P’(rwt–5

= 1) = 1) is the probability of having had a heart attack betweent–5 andt among people who have
a bmi of 25 att–5, everyone having been assigned to drink an average of 1 glass of red wine daily
betweent–10 andt–5. In this paper, in order to simplify the exposition, it will be assumed that all
attempted manipulations are successful; that is, ifP’(rwt–5 = 1) =x thenP(rwt–5 = 1 || P’(rwt–5 = 1)
= x) = x (that is, if rwt–5 is manipulated to have value 1 with probabilityx, then in the manipulated
population,rwt–5 has value 1 with probabilityx.) For example, if it is assumed thatP’(rwt–5 = 1) =
1 thenP(rwt–5 = 1 || P’(rwt–5 = 1) = 1) = 1, that is if everyone has been assigned to drink an average
of 1 glass of red wine per day for 5 years (denotedP’(rwt–5 = 1) = 1), that everyone has done so.

In a randomized trial, a manipulation could setP’(rwt–5 = 1) = 0.5 andP’(rwt–5 = 0) = 0.5, in
which case the resulting density isP(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || {P’(rwt–5 = 1) = 0.5,
P’(rwt–5 = 0) = 0.5}).

In more complex manipulations, different probabilities can be assigned to different subpopula-
tions. For example, the amount of red wine someone is assigned to drink couldbe based onsex:
P’(rwt–5 = 0 | sex =0) = 0.25,P’(rwt–5 = 1 | sex= 0) = 0.75,P’(rwt–5 = 0 | sex= 1) = 0. 5,P’(rwt-5

= 2 | sex= 1) = 0.5. The resulting density isP(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || {P’(rwt–5

= 0 | sex =0) = 0.25,P’(rwt–5 = 1 | sex= 0) = 0.75,P’(rwt–5 = 0 | sex= 1) = 0.5,P’(rwt-5 = 2 |
sex= 1) = 0.5}). In general, which manipulations are performed on which subpopulationscan be a
function both of the values of various random variables, and of what other past manipulations have
been performed.

In many cases the values of some variables in the pre-manipulation density arestable, and the
temporal indices on those variables are omitted. Similarly, if it is assumed that variables in the
post-manipulation population eventually stabilize to fixed values, the time indices ofthose variables
are omitted in the post-manipulation density, and the time-independent variables refer to the stable
values. Both of these kinds of omissions of time indices are illustrated by the useof sex in the
example.

In contrast to conditional probabilities, which can be estimated from samples from a population,
typically the gold standard for estimating manipulated densities is an experiment, often a random-
ized trial. However, in many cases experiments are too expensive, too difficult, or not ethical to
carry out. This raises the question of what can be determined about manipulated probability densi-
ties from samples from a population, possibly in combination with a limited number of randomized
trials. The problem is even more difficult because the inference is made from a set of measured ran-
dom variablesO from samples that might not contain variables that are causes of multiple variables
in O.

Problem 2: Causal Predictive Modeling
Input: Samples from a population with densityP(O), and a (possibly empty) set of
manipulated densitiesP(O ||M1), . . . P(O ||Mn), a manipulationM, and setsX, Y ⊆ O.
Output: A consistent, efficient estimate ofP(Y | X ||M) if possible, and an output of “not
possible” otherwise.
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With causal inference, as with statistical inference, it is generally the casethat in order to make
inference tractable both computationally and statistically, simplifying assumptions are made. One
kind of simplifying assumption common to both statistical and causal inference is the assumption
that the population distribution lies in some parametric family (for example, Gaussian) or that rela-
tionships between variables are exactly linear. An example of a simplifying assumption unique to
causal inference is that multiple causal mechanisms relating variables do notexactly cancel (Section
3). So, although the goal of Problem 2 is stated as finding a consistent estimate of a manipulated
density, it is more realistic to state the goal as finding a sufficiently good estimate of a manipulated
density when the sample size is large enough.

Problem 2 is usually broken into two parts: finding a set of causal models from sample data,
some manipulations (experiments) and background assumptions (Sections 3 and 4), and predicting
the effects of a manipulation from a set of causal models (Section 3). Here, a “causal model” (Sec-
tion 3) specifies for each possible manipulation that can be performed on thepopulation (including
the manipulation that does nothing to a population) a post-manipulation density over a given set of
variables. In some cases, the inferred causal models may contain unmeasured variables as well as
measured variables.

Problem 3: Constructing Causal Models from Sample Data
Input: Samples from a population with densityP(O), a (possibly empty) set of manipulated
densitiesP(O||M1), . . . P(O||Mn), and background assumptions.
Output: A set of causal models that is as small as possible, and contains a true causal model
that contains at least the variables inO.

Problem 4: Predicting the Effects of Manipulations from Causal Models
Input: An unmanipulated densityP(O), a setC of causal models that contain at least the
variables inO, a manipulationM, and setsX, Y ⊆ O.
Output: A functiong such thatP(Y | X ||M) = g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

In analogy to the goals of statistical modeling, it would be more accurate but much more vague
to state that the goal in Problem 3 is to find a useful (for example, sufficientlysimple, sufficiently
accurate, etc.) causal model, rather than a true causal model.

The reason that the stated goal for the output of Problem 3 is a set of causal models, is that
it is generally not possible to reliably find a true causal model given the inputs. Furthermore,
in contrast to predictive models, even if a true causal model can be inferred from a sample from
the unmanipulated population, it generally cannot be validated on a sample from the unmanipu-
lated population, because a causal model contains predictions about a manipulated population that
might not actually exist. This has been a serious impediment to the improvement ofalgorithms
for constructing causal models, because it makes evaluating the performance of such algorithms
difficult. It is possible to evaluate causal inference algorithms on simulated data, to employ back-
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ground knowledge to check the performance of algorithms, and to conduct limited (due to expense,
time, and ethical constraints) experiments, but these serve as only partial checks how algorithms
perform on real data in a wide variety of domains. For examples, see the Causality Challenge
(http://www.causality.inf.ethz.ch/challenge.php).

In the Special Topic on Causality in this journal, Shpitser and Pearl (2008)and Zhang (2008)
address Problem 4. Bromberg and Margaritis (2009), Pellet and Elisseeff (2008), He and Geng
(2009), and (indirectly) Kang and Tian (2009), Aliferis et al. (2010a), and Aliferis et al. (2010b)
address Problem 3. Both the problems and the papers will be described in more detail in subsequent
sections.

2.3 Effects of Counterfactual Manipulations

There are cases in ethics, the law, and epidemiology in which there are questions about applying
a manipulation to a subpopulation whose membership cannot be measured at thetime that the
manipulation is applied. For example, epidemiologists sometimes want to know what would the
effect on heart attacks have been, if a manipulation such as assigning moderate drinking of red wine
from t–10 tot–5, had been applied to the subpopulation which hasnot moderately drunk red wine
from t–10 tot–5. When the manipulation under consideration assigns a value to a random variable
to a subpopulation with a different actual value of the random variable, theprobability in question
is acounterfactualprobability. If the subpopulation that did not moderately drink red wine between
t–10 andt–5 differs systematically from the rest of the population with respect to causes of heart
attacks, the subpopulations’ response to being assigned to drink red winewould be different than
the rest of the population.

Questions about counterfactual probabilities arise naturally in assigning blame in ethics or in
the law. For example, the question of whether tobacco companies were negligent in the case of
someone who smoked and developed lung cancer depends upon the probability that person would
not have gotten lung cancer if they had not smoked.

A counterfactual probability cannot be estimated directly from a randomizedexperiment, be-
cause it is impossible to perform a randomized experiment that assigns moderate red wine drinking
betweent–10 tot–5 to a group of people who already have not been moderate wine drinkers between
t–10 andt–5. This raises the question of how counterfactual probabilities can be estimated. One
general approach is to assume that the value of red wine drinking betweent–10 andt–5 contains
information about hidden causes of red wine drinking that are also causes of heart attacks.

Problem 5: Counterfactual predictive modeling
Input: An unmanipulated densityP(O), a setC of causal models that contain at least the
variables inO, a counterfactual manipulationM, and setsX, Y ⊆ O.
Output: A functiong such thatP(Y | X ||M) = g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

In the Special Topic on Causality in this journal, Shpitser and Pearl (2008)describes a solution
to Problem 5 in the case where the causal graph is known, but may contain unmeasured common
causes.
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3. Causal Models

This section describes several different kinds of commonly used causal models, and how to use
them to calculate the effects of manipulations. The next section describes search algorithms for
discovering causal models.

A (parametric)statistical model(with free parameters) is a set of probability densities that can be
mapped into a single density by specifying the values of the free parameters (for example, a family
of multivariate Gaussian densities).4 For example, a Hidden Markov Model with a fixed structure
but free parameters is a statistical model that represents a certain set of probability densities. A
causal model with free parametersalso specifies a set of probability densities over a given set of
variables; however, in addition, for each manipulation that can be performed on the population
it also specifies a set of post-manipulation probability densities over a givenset of variables. A
causal model with free parameters together with the values of the free parameters is acausal model
with fixed parameters; a causal model with fixed parameters is mapped to a single density given a
specification of a manipulation.

Often, a causal model is specified in two parts: a statistical model, and a causal graph that
describes the causal relations between variables. The most frequently used causal models belong to
two broad families: (1) causal Bayesian networks, (2) structural equation models. Causal Bayesian
networks (and related models), specify a density for a variable as a function of the values of its
causes. Structural equation models (SEMs) specify the value of a variable as a function of the
values of its causes (typically including some unmeasured noise terms.) However, not surprisingly,
the two kinds of models are closely linked, as explained in Section 3.2.

The statistical setup for both causal Bayesian networks and structural equation models is a
standard one. There is a population of units, where depending upon the problem, the units could
be people, cities, cells, genes, etc. It is assumed that there is a density over the population, which
assigns probabilities to each measurable subset (event) of the population.Each unit also has a set of
properties at a time, where the properties are represented by random variables, which are functions
from the units to real numbers. The following sections describe the causalpart of the model.

3.1 Causal Bayesian Networks

A Bayesian networkis a pair〈G,P〉, whereG is a directed acyclic graph (DAG) whose vertices are
random variables, andP is a density such that each variableV in G is independent of variables that
are neither descendants nor parents ofV in G,5 conditional on the parents ofV in G. In this caseP
is said to satisfy thelocal directed Markov conditionfor G.

There are two conditions that are equivalent to the local directed Markovcondition described
below that are useful in causal inference: the global directed Markovcondition, and factorization
according toG, both of which are described next.

The conditional independence relations specified by satisfying the local directed Markov condi-
tion for DAG G might also entail other conditional independence relations. There is a fastalgorithm
for determining fromG whether a given conditional independence relation is entailed by satisfying
the local directed Markov condition forG, that uses the d-separation relation, a relation among the

4. In the nomenclature of machine learning, what this article calls a “model(with free parameters)” is often called a
“model family” or “learning machine” and a “model (with fixed parameter values)” is often called a “model instance”
or “model”.

5. X is aparentof Y if the graph contains the edgeX→ Y. Y is adescendantof X if there is a directed path fromX to Y.
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vertices ofG. A variableB is acollider (v-structure) on a path Uif and only if U contains a subpath
A→ B← C. For disjoint sets of verticesX, Y, andZ in a DAG G, X is d-connectedto Y givenZ
if and only if there is an acyclic pathU between some memberX of X, and some memberY of Y,
such that every collider onU is either a member ofZ or an ancestor of a member ofZ, and every
non-collider onU is not inZ.6 For disjoint sets of vertices,X, Y, andZ, X is d-separatedfrom Y
givenZ if and only if X is not d-connected toY givenZ. X is d-separated fromY conditional on
Z in DAG G if and only if X is independent ofY conditional onZ in every density that satisfies
the local directed Markov condition forG (Pearl, 1988). IfX is independent ofY conditional onZ
in P wheneverX is d-separated fromY conditional onZ in G, thenP satisfies theglobal directed
Markov conditionfor G.

For the set of random variablesV in G, a densityP(V) factors according toDAG G iff

P(V) = ∏
V∈V

P(V|Parents(V,G))

whereParents(V,G) is the set of parents ofV in G.
The local directed Markov condition, the global directed Markov condition, and factorization

according to a DAGG are all equivalent under mild regularity assumptions (Lauritzen et al., 1990).
A DAG can also be used to represent causal relations between variables. A is adirect causeof

B relative to a set of variablesV in a population when there exist two manipulations ofV\{B} (that
is, all the variables inV, exceptB, are manipulated to specific values) that differ only in the values
assigned toA and that produce different probability densities ofB. A causal DAG Gfor a population
contains an edgeA→ B iff A is a direct cause ofB in the specified population.

In order to use samples from probability densities to make causal inferences, some assumptions
relating causal relations to probability densities need to be made. The followingCausal Markov
Assumption is commonly made, if only implicitly. A set of variablesV is causally sufficientiff
there is no variableC not in V that is a direct cause of more than one variable inV (relative toV ∪
{C}).

Causal Markov Assumption: For a causally sufficient set of variablesV in a populationN
with densityP(V), P(V) satisfies the local directed Markov condition for the causal DAG ofN.

Under the Causal Markov Assumption, in a causal Bayesian network a manipulation of X to
P’(X | Y) (whereY is assumed to contain only non-descendants ofX in a causal DAGG) simply
replaces the termP(X | Parents(X,G)) in the factorization of the joint density by the manipulated
densityP’(X | Y):

P(V||P′(X|Y)) = P′(X|Y) ∏
V∈V\{X}

P(V|Parents(V,G)).

This is called themanipulation rule. The importance of the manipulation rule is that if the
causal DAG is known, and the unmanipulated density can be estimated from a sample, it allows the
prediction of the effect of an unobserved manipulation. Hence the manipulation rule is the solution
to Problem 4, in the special case where the observed variables are causally sufficient, and the unique
correct causal DAG is known.

6. For both the d-separation relation and the independence relation, ifX contains a single vertexX, thenX will be
written instead of{X}, and similarly forY andZ. D-connection can also be defined for cyclic graphs and graphs with
double-headed arrows (Spirtes, 1995; Koster, 1999; Cox and Wermuth, 1996).
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The solution to Problem 4 is more difficult when the set of observed variables is not causally
sufficient. There are sufficient and (almost) necessary rules for determining which manipulated
conditional probability densities are invariant under a given manipulation (that is, which densities
are the same in the unmanipulated population and the manipulated population) and rules for how to
express some non-invariant conditional densities as functions of observed densities (Spirtes et al.,
1993). Pearl’s do-calculus extended the sufficient and (almost) necessary conditions for determining
which conditional densities were invariant from single manipulations to sequences of manipulations,
and showed how a broader range of non-invariant manipulated densitiescould be expressed in terms
of observed densities (Pearl, 1995). In the Special Topic on Causality of this journal, Shpitser and
Pearl (2008) describe an algorithm that has recently been developed and show that it is a complete
solution to Problem 4 in the special case where a unique causal DAG is known (Shpitser and Pearl,
2006a,b; Huang and Valtorta, 2006).

Calculation of the effect of a counterfactual manipulation when causal sufficiency does not
hold among the observed variables is a complex operation that requires several copies of the causal
graph in order to keep track both of the actual value of the variable being manipulated, and the
counterfactual value of the variable being manipulated. In the Special Topic on Causality, Shpitser
and Pearl (2008) describe for the first time an algorithm that is a complete solution to Problem 5 in
the special case where a unique causal DAG is known, even if the set ofobserved variables is not
causally sufficient.

3.2 Structural Equation Models (SEMs)

Structural equation models are widely used in the social sciences (Bollen, 1989) and in some natural
sciences. The set of random variables in a structural equation model (SEM) can be divided into two
subsets, the “error variables” or “error terms,” and the substantive variables (for which there is no
standard terminology in the literature). The substantive variables are the variables of interest, but
they are not necessarily all observed. Which variables are substantive, and which variables are error
terms can vary with the analysis of the problem. Each substantive variable is afunction of other
substantive variables and a unique error term. The joint density over the substantive variables is a
function of the density over the error terms and of the functions relating each variable to its causes.
There is an edgeA→ B in the graph (“path diagram”) of a SEM whenA is a non-trivial argument
in the function forB. A manipulation of a variableB to a constantc is represented in a SEM by
replacing the equation forB with B = c.

In general, the graph of a SEM may have cycles (that is, directed paths from a variable to itself),
and may explicitly include error terms with double-headed arrows between them to represent that
the error terms are dependent (for example,εA↔ εB); if no such double-headed edge exists in the
graph, the error terms are assumed to be independent of each other. Anerror term is not explicitly
included in the graph unless it is the endpoint of a double-headed arrow;otherwise, an error term
occurs in the SEM model, but is not shown in the graph. If the graph has nodirected cycles and no
double-headed arrows, then the graph is a DAG and the SEM is said to berecursive; otherwise it is
said to benon-recursive.

In a recursive SEM, if the marginal density over the substantive variables isP(V), then〈G,P(V)〉
is a Bayesian network (Spirtes et al., 2001; Pearl, 2000); for short, say that a SEM with an associated
graph that is a DAG is a Bayesian network (although the SEM contains some extra structure in that it
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entails that any non-determinism among the substantive variables is only due tothe marginalization
of the error terms.)

Non-recursive SEMs are of interest because they allow for the representation of feedback (with
cycles) or unmeasured common causes (represented by double-headed arrows.) In the case of linear
non-recursive SEMs, it is still possible to deduce the conditional independencies (or more generally
the zero partial correlations) entailed for all Gaussian SEMs (or more generally linear SEMs) from
the graphG of a non-recursive linear SEM using a minor modification of the d-separation relation
(Koster, 1999; Spirtes, 1995).

For both theoretical interest and for the purposes of efficient (constraint-based) search of the
space of linear non-recursive SEMs without cycles (Section 4.2), it is of interest to find some proper
subset of the set of all conditional independence relations entailed by the(modified) d-separation
which entail all the rest, that is, a modified form of the local directed Markovcondition. (In contrast
to the recursive case, where such a subset is given by the independencies entailed by the local di-
rected Markov condition, in the non-recursive case SEMs do not generally satisfy the local directed
Markov condition). One such subset of conditional independencies was described by Richardson
(2003). In this special issue, the paper by Kang and Tian (2009) describes another such subset,
which is often smaller than the one described by Richardson, and hence might be more useful for
the purposes of search.

4. Model Search

Traditionally, there have been a number of different approaches to causal discovery. The gold
standard of causal discovery has typically been to perform planned orrandomized experiments
(Fisher, 1971). There are obvious practical and ethical considerations that limit the application of
experiments in many instances, particularly on human beings. Moreover, recent data collection
techniques and causal inference problems raise several practical difficulties regarding the number
of experiments that need to be performed in order to answer all of the outstanding questions.

In the absence of experiments, in practice (particularly in the social sciences) search for causal
models is often informal, and based on a combination of background assumptions about causal
relations together with statistical tests of the causal models. If a model is rejected by a statistical test,
the researcher looks for a modification of the original hypothesized modelthat will pass a statistical
test. The search typically halts when a model that is compatible with backgroundknowledge does
not fail a statistical test (Rodgers and Maranto, 1989). Often, the finalmodel is presented, and the
search itself is not described. Informal searches of this kind fail to account for multiple testing
problems, and can potentially lead to severe overfitting problems. The reliabilityof such a search
depends upon the correctness of the background assumptions, and theextent to which the space of
alternatives compatible with the background assumptions was searched. Furthermore, unless the
background assumptions are very extensive, or the number of variables is tiny, it is not feasible
to estimate and test all of the models compatible with background assumptions. Thisis further
complicated by the fact that, as explained below, for reliable causal inference it is not sufficient to
find one model that passes a statistical test; instead it is necessary to find allsuch models. Recent
developments in automated model search have attempted to address these problems with traditional
methods of search.
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There are several major differences between model search in the caseof predicting the unmanip-
ulated value ofY, and model search in the case of predicting the post-manipulation value ofY, based
on the different uses of statistical models and causal models described in the following section.

4.1 Underdetermination of Causal Models by Data

Causal model (with fixed parameter) search is often broken into two parts:search for a causal graph,
and estimation of the free parameters from sample data and the causal graph. (In some cases, the
prediction of the effects of manipulations does not require estimating all of thefree parameters, but
does require estimating functionals of the free parameters.) Generally, the estimation of the free
parameters employs standard statistical methods. For example, in a linear SEM with a recursive
DAG, no unmeasured variables, and Gaussian errors, the maximum likelihood estimate of the edge
coefficients is given by regressing each variable on its parents in the DAG. This section concentrates
on the search for causal graphs, because the search for causal graphs is significantly different than
the search for graphs that are to be used only as statistical models.

In causal model search based on unmanipulated data, if no preferencefor simpler models over
more complex models is made, then the causal models are underdetermined to such an extent that
useful causal inference is impossible for many important parametric families (for example, Gaussian
or multinomial) or unrestricted probability densities. There are a variety of simplicity assumptions
that select simpler models over more complex models that can be made. In the case of search
based upon maximizing some model score given sample data (such as the Bayesian Information
Criterion), the simplicity assumption is a penalty for complexity built into the score (Chickering,
2002). For search that is not based upon model scores, the following simplicity assumption is often,
if implicitly made:

Causal Faithfulness Assumption: For a causally sufficient set of variablesV in a populationN,
every conditional independence relation true in the density overV is entailed by the local directed
Markov condition for the causal DAG ofN.

There are several other versions of the assumption that are considerably weaker than the one
stated here (and more intuitively justifiable) but still permit reliable causal inference, at the cost of
requiring more complicated algorithms with more complex and somewhat less informative output
(Ramsey et al., 2006).

However, even given the Causal Markov and Faithfulness Assumptionsand the assumption
that the observed variables are causally sufficient, the true causal model is underdetermined by the
available evidence and background assumptions, because of the hierarchy of equivalence relations
described below.

Two different DAGsG andG’ that have the same set of d-separation relations are said to be
Markov(conditional independence, d-separation) equivalent.

For each DAGG, there is a setP of probability densities that satisfy the local directed Markov
condition forG, denotedP(G) that are said to berepresentedby G. In many cases, some subset of
P that belongs to a parametric or semi-parametric familyF is of interest; for example, the Gaussian
subset ofP. Two DAGsG andG’ arestatistically equivalent with respect toF iff P(G) ∩ F = P(G’)
∩ F. Two DAGs that are statistically equivalent with respect toF are the same statistical model with
respect toF.

Two DAGs arecausally equivalent(with respect to a family of densitiesF) iff they represent
the same set of probability densities (in familyF) for every manipulation (including the null ma-
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nipulation.) It is easy to see that no pair of DAGs that differ in their structurecan be causally
equivalent.

As an example,A → B ← C ← D and A → B ← C → D are Markov equivalent, but not
causally equivalent. They are statistically equivalent with respect to Gaussian SEMs, but they are
not statistically equivalent with respect to linear SEMs with at most one Gaussian error term, and
no determinism among the substantive variables (Shimizu et al., 2006).7

In the absence of further information (for example, samples from manipulated densities or back-
ground domain knowledge) all of the DAGs in a statistical equivalence classfit the data and the back-
ground assumptions equally well, and are equally simple. Hence standard scores such as Bayesian
Information Criterion, Minimum Description Length, chi-squared statistics, etc. all produce equal
scores for the alternative DAGs in a statistical equivalence class for all data sets -- in general, there is
no one DAG with the highest score, but rather, there is a set of DAGs with equally high scores. Fur-
thermore, for computational and statistical reasons, it is sometimes easier to search for the Markov
equivalence class of DAGs, even if it is known that the statistical equivalence class is a proper subset
of the Markov equivalence class.

If the DAG is to be used to estimate observational (not manipulated) conditionaldensities, this
is not a problem, because all of the statistically equivalent models will produce the same estimate.
However, if the DAG is to be used to predict the effects of manipulations, thenthe different models
will make different predictions about at least some manipulations. So in the case of causal modeling,
unlike observational statistical modeling, it is not enough to simply output one arbitrarily selected
DAG from a set of highest scoring DAGs -- it is important to output the entireset, so that all of
the different answers given by the different models can be taken into account. Once the set of
highest scoring DAGs is found, the problem of dealing with the underdetermination of the effects
of manipulations must also be dealt with. These problems are described in moredetail in the next
two subsections.

If the assumption of causal sufficiency of the observed variables is notmade, all three kinds of
equivalence classes have corresponding equivalence classes over the set of observed variables, and
the problem of causal underdetermination becomes much more severe. Forexample, for a given set
of observed variablesO, the Markov equivalence class relative toO consists of the set of all DAGs
(possibly containing variables not inO) that have the same set of d-separation relations among the
variables inO; this might be much larger than the Markov equivalence class that consists of the set
of DAGs (containing only variables inO) that have the same set of d-separation relations among the
variables inO.

4.2 Constraint-based Search

First, the problem where only sample data from the unmanipulated population density is available
will be considered. The number of DAGs grows super-exponentially with the number of vertices,
so even for modest numbers of variables it is not possible to examine each DAG to determine
whether it is compatible with the population density given the Causal Markov and Faithfulness As-
sumptions. Constraint based search algorithms, given as input an oraclethat returns answers about
conditional independence in the population and optional background knowledge about orientations
of edges, return a representation of a Markov equivalence class (orif there is background knowl-

7. In a linear SEM it is assumed that each variable is a linear function of its causal parents and a unique error term; in a
Gaussian SEM it is assumed in addition that the errors term are Gaussian.
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edge, a subset of a Markov equivalence class) on the basis of oraclequeries. One example of a
constraint-based algorithm is the PC algorithm (Spirtes and Glymour, 1991).If the oracle always
gives correct answers, and the Causal Markov and Causal Faithfulness Assumptions hold, then the
PC algorithm always outputs a Markov equivalence class that contains thetrue causal model, even
though the algorithm does not check each directed acyclic graph. In the worse case, it is exponential
in the number of variables, but for sparse graphs it can run on hundreds of variables in an accept-
able amount of time (Spirtes and Glymour, 1991; Spirtes et al., 1993; Meek, 1995). Kalisch and
Buhlmann (2007) showed that under a strengthened version of the Causal Faithfulness Assumption,
the PC algorithm is uniformly consistent for very high-dimensional, sparse DAGs where the num-
ber of nodes is allowed to quickly grow with sample sizen, as fast asO(na) for any 0< a < ∞. In
practice, the judgments about conditional independence are made by performing (fallible) statistical
tests. A number of other variants of constraint-based algorithms have beenproposed that improve
on either the accuracy or speed of the PC algorithm, or to weaken the assumptions under which it is
guaranteed to be correct.

There are both advantages and disadvantages of constraint based searches as compared to either
a Bayesian approach to the problem of causal discovery (Heckerman and Geiger, 1995), or an
approach based upon assigning a score to each causal model for a given data set (for example,
Bayesian information criterion) and searching for the set of causal models that maximize the score
(Chickering, 2002).

The disadvantages of constraint-based search include that the output of constraint-based searches
give no indication of how much better the best set of output models is compared to the next best
set of models; at small sample sizes tests of conditional independence havelow power, particularly
when many variables are conditioned on; mistakes made early in a constraint based searches can
lead to later mistakes; and if the only constraints used are conditional independence constraints, as
is often but not always the case, then at best the search outputs a Markov equivalence class, rather
than a statistical equivalence class.8 In addition, constraint-based methods have the problem of mul-
tiple testing. If no control is made for multiple testing, the models may overfit the data. However,
adjustments to control for overfitting, such as the Bonferroni correction, are often too conservative
and as a result the corrected statistical tests are not very powerful. Theissue of multiple testing
appears in Bayesian approaches to causal discovery as multiple causalmodel scoring. The issue is
handled automatically by Bayesian methods by their use of prior probabilities (Heckerman et al.,
1999).

The advantages of constraint-based algorithms are that they are easier togeneralize to the case
where the observed variables are not causally sufficient, they are generally fast, and given recent
developments of non-parametric conditional independence tests, they areapplicable without para-
metric assumptions (Tillman et al., 2009).

In the Special Topic on Causation, Bromberg and Margaritis (2009) modelsthe problem of low
power of statistical tests as a knowledge base containing a set of independence facts related through
conditional independence axioms that may contain errors due to errors in the tests of conditional
independence. The inconsistencies are resolved through the use of a defeasible logic called ar-
gumentation that is augmented with a preference function. The logic is used to reason about and
possibly correct errors in these tests. Experimental evaluation shows significant improvements in the
accuracy of argumentative over purely statistical tests, and improvements on the accuracy of causal

8. For searches that use non-conditional independence constraints see Silva et al. (2006) and Shpitser et al. (2009).
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structure discovery from sampled data from randomly generated causalmodels and on real-world
data sets.

The contributions to the Special Topic on Causality by Aliferis et al. (2010a)and Aliferis et al.
(2010b) show that a general framework for localized causal membership structure learning is very
accurate even in small sample situations and can thus be used as a first step for efficient global
structure learning, as well as accurate prediction and feature selection.It also provides extensive
empirical comparisons of state of the art causal learning methods with non-causal methods for the
above tasks. In addition, they show that unexpectedly some constraint-based methods are self-
correcting with respect to multiple testing, and this may constitute a new methodologyfor control
of multiple statistical testing.

Another problem with constraint-based algorithms is to make them feasible for even higher
dimensional data sets. In the Special Topic on Causality, Pellet and Elisseeff (2008) link the causal
model search problem to a classic machine learning prediction problem. Theyshow how a generic
feature-selection algorithm returning strongly relevant variables can beturned into a causal model
search algorithm. Under the Causal Markov and Causal Faithfulness Assumptions, the smallest set
of features relevant to predicting a vertexV is the set of parents, children, and parents of children
of V. Ideally, the variables returned by a feature-selection algorithm identify those features of the
causal graph. Then further processing removes the extra edges (betweenV and those variables
that are parents of children ofV but that are neither parents nor children ofV) and provides as
many orientations as possible. This algorithm is more accurate than PC and other constraint-based
algorithms, and has the advantage that it can use arbitrary feature-selection techniques developed for
high-dimensional data sets under different assumptions to provide causal model learning algorithms
for high-dimensional data under those assumptions.

4.3 Dealing with Underdetermination

One possibility for dealing with the underdetermination of causal models by observational data is
to strengthen the available information by sampling from manipulated densities, orin other words,
performing experiments.

In the Special Topic on Causality, He and Geng (2009) propose an algorithm for distinguishing
between members of a Markov equivalence class by a set of optimally designed experiments. They
consider several kinds of experiments, and both a batch-design and a sequential design to minimize
the required number of manipulations using both minimax and maximum entropy criteria.

If some members of the Markov equivalence class cannot be eliminated through experimenta-
tion, there are several different approaches to using the entire Markov equivalence class to predict
the effects of manipulations. (This is Problem 4 in the case where the predictions are made from
a set of causal modelsC rather than a single causal model, and the set of observed variables may
not be causally sufficient.) One possibility is to predict an interval for the potential effects of the
manipulated quantity, instead of a point value. Theoretically, an interval could be obtained by cal-
culating the manipulated quantity for each DAGG in the Markov equivalence class, and taking the
lower and upper limits. Depending upon how many different SEMs there arein the output, this is
sometimes computationally feasible (Maathuis et al., 2009).

A second possibility is to use a Bayesian approach, and perform model averaging. That is,
a prior probability is placed over each causal DAGG, and a posterior probability for eachG is
calculated. Then the manipulated quantity is calculated for eachG in the output of the search,
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and the results are averaged together. This requires putting a prior probability over each graph;
in addition, if there are many graphs in the output, then this may not be computationally feasible
(Hoeting et al., 1999).

A third alternative is to have an algorithm that determines whether each DAG in the Markov
equivalence class predicts the same effect of a given manipulation. For example, if the Markov
equivalence class containsA→ B← C→ D andA→ B← C← D, then the two causal DAGs
disagree about the effect of manipulatingD on C, but agree about the effect of manipulatingA on
B. Even when the observed variables are not causally sufficient there isan algorithm (the Prediction
Algorithm) for determining when all of the DAGs in a Markov equivalence class relative to the
observed variables agree about the effect of a particular manipulation,and returns the common
value of the predicted manipulation when they do all agree (Spirtes et al., 1993). However, this
algorithm is known to be correct but incomplete (that is, it sometimes returns “don’t know” even
when all models in the equivalence class agree on the effect of a particular manipulation). In this
special issue, Zhang (2008) provides a modified version of Pearl’s do-calculus that is more complete
than the Prediction algorithm.

5. Open Questions

The following is an overview of important problems that remain in the domain of causal modeling.
1. Matching causal models and search algorithms to causal problems. There are a wide variety

of causal models that have been employed in different disciplines. What new models and search
algorithms are appropriate for different domains such as feedback or reversible systems (Richard-
son, 1996)? What search algorithms are appropriate for different combinations of kinds of data,
such as experimental and observational data (Eberhardt et al., 2005;Cooper and Yoo, 1999; Yoo
and Cooper, 2004; He and Geng, 2009)? What search algorithms are appropriate for different kinds
of background knowledge, and different families of probability densities?

2. Model selection, and prior knowledge. What kind of scores can be used to best evaluate causal
models from various kinds of data? In a related vein, what are good familiesof prior densities that
capture various kinds of background knowledge?

3. Improve efficiency and efficacy of search algorithms. How can search algorithms be im-
proved to incorporate different kinds of background knowledge, search over different classes of
causal models, run faster, handle more variables and larger sample sizes, be more reliable at small
sample sizes, and produce output that is as informative as possible?

4. Characterization of search algorithms. For causal search algorithms,what are their semantic
and syntactic properties (for example, soundness, consistency, maximuminformativeness)? What
are their statistical properties (pointwise consistency, uniform consistency, sample efficiency)?9

What are their computational properties (computational complexity)?
5. Adding or relaxing simplifying assumptions. What plausible alternatives are there to the

Causal Markov and Faithfulness Assumptions? Are there other assumptions that might be weaker
and hold in more domains and applications without much loss about what can bereliably inferred?

9. Intuitively, an estimator is pointwise consistent when as the sample size increases without limit, regardless of the true
value, with probability 1 the absolute value of the difference between the estimator and the true value approaches
zero. An estimator is uniformly consistent if for any givenε andδ, there is a single sample size such that in the worst
case, the probability is less thanε that the absolute value of the difference between the estimator and the true value is
greater thanδ. For precise definitions in the causal context, see Robins et al. (2003).
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Are there stronger assumptions that are plausible for some domains that mightallow for stronger
causal inferences? How often are these assumptions violated, and how much do violations of these
assumptions lead to incorrect inferences? Can various statistical assumptions be relaxed? For ex-
ample, what if the sample selection process is not i.i.d., but may be causally affected by variables of
interest?

6. Derivation of consequences from causal graph and unmanipulateddensities. Shpitser and
Pearl have given complete algorithms for deriving the consequences ofvarious causal models with
hidden common causes in terms of the unmanipulated density and the given manipulation (Shpitser
and Pearl, 2008). Partial extensions of these results to deriving consequences from sets of causal
models have been given (Zhang, 2008); are there further extensionsto derivations from sets of
causal models?

7. New constraints for structure learning. The Causal Markov and Causal Faithfulness Assump-
tions, in addition to entailing conditional independence constraints on densities, also entail other
constraints on densities. For example, in a linear SEM, if an unobserved variable T causes ob-
served variablesX1, X2, X3, X4, and there are no other causal relations among these variables, then
there are no entailed conditional independence relations among just the observed variablesX1, X2,
X3, X4. However, the SEM entails cov(X1,X2) cov(X3,X4) = cov(X1,X3) cov(X2,X4) = cov(X1,X4)
cov(X2,X3) regardless of the values of the free parameters. This information is useful in finding
causal structure with unmeasured variables. In addition, there are sometimes constraints that are not
conditional independence constraints on the density of the observed variables that do not depend
upon any parametric assumptions (Shpitser et al., 2009). How can these non-parametric constraints
be incorporated into search algorithms?

8. Find variable definitions. In many domains, such as fMRI research, there are thousands of
variables, but the measured variables do not correspond to functionalunits of the brain. How is it
possible to define new variables that are functions of the measured variables, but more useful for
causal inference and more meaningful?

9. Find new applications of causal inference. Applications of causal inference algorithms in
many domains (Cooper and Glymour, 1999) help test and improve causal inference algorithms,
suggest new problems, and produce domain knowledge.

10. Creating good benchmarks. What are the most appropriate performance measures for causal
inference algorithms? What benchmarks can be established? What is the best research design for
testing causal inference algorithms?

11. Formal connections between different causal modeling approaches. Many different fields
have studied causal discovery including Artificial Intelligence, Econometrics, Operations Research,
Control Theory, and Statistics. What are the formal connections betweenthe different models,
assumptions, and algorithms used in each of these fields? What can each ofthese domains learn
from the others?
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