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Abstract

The notion of embedding a class of dichotomies in a class of linear half spaces is central
to the support vector machines paradigm. We examine the question of determining the
minimal Euclidean dimension and the maximal margin that can be obtained when the
embedded class has a finite VC dimension.

We show that an overwhelming majority of the family of finite concept classes of any
constant VC dimension cannot be embedded in low-dimensional half spaces. (In fact, we
show that the Euclidean dimension must be almost as high as the size of the instance
space.) We strengthen this result even further by showing that an overwhelming majority
of the family of finite concept classes of any constant VC dimension cannot be embedded
in half spaces (of arbitrarily high Euclidean dimension) with a large margin. (In fact, the
margin cannot be substantially larger than the margin achieved by the trivial embedding.)
Furthermore, these bounds are robust in the sense that allowing each image half space to
err on a small fraction of the instances does not imply a significant weakening of these
dimension and margin bounds.

Our results indicate that any universal learning machine, which transforms data into
the Euclidean space and then applies linear (or large margin) classification, cannot en-
joy any meaningful generalization guarantees that are based on either VC dimension or
margins considerations. This failure of generalization bounds applies even to classes for
which ”straight forward” empirical risk minimization does enjoy meaningful generalization
guarantees.
Keywords: Concept Learning, Embeddings in Half Spaces, Large Margin Classification

1. Introduction

Half spaces, or hyper-planes, have been at the center of the computational learning theory
research since the introduction of the Perceptron algorithm by Rosenblatt (1958, 1962)
and Minsky and Papert (1988). This interest in half spaces has led to a multitude of results
concerning the learnability of these classes. In an attempt to harness the results achieved
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for this concept class in more general cases, one may consider a (more or less) universal
learning paradigm that works by embedding other concept classes in half spaces. E.g.,
Support Vector Machines (SVMs) are based on the idea of embedding complex concept
classes in half spaces and then applying efficient half spaces learning algorithms.

However, there may be a cost to pay for learning via such embeddings. The best known
sample-independent bounds on the generalization ability of a hypothesis generated by a
learning algorithm depend on the VC dimension of the concept class from which hypotheses
are drawn. For half spaces this equals the Euclidean dimension over which these half spaces
are defined. The first question addressed by this research is:

Given a concept class (that is, some domain set and a family of dichotomies
over this set), what is the minimal dimension of half spaces into which it can be
embedded?

SVM theory offers a partial remedy to this problem. The margins of a hypothesis half
space w.r.t. a given training sample can be used to compute a bound on the generalization
quality of the hypothesis. If classification occurs with large enough margins then good
generalization can be guaranteed regardless of the Euclidean dimension of these half spaces
(For example, see Vapnik 1998, Freund and Schapire 1999, Mason et al. 2000.) This leads
us to the second question that we discuss:

Given a concept class, can the domain points and the class of concepts be em-
bedded in some class of half spaces (of arbitrarily high Euclidean dimension) in
such a way that there will be some significant margin separating the images of
the sample points from the half spaces that are the images of the concepts of
the class?

In this work we obtain strong negative answers to both questions. We prove that for
“most classes” of any fixed VC dimension no embedding can obtain either a dimension or
margins that are significantly better than those obtained by the trivial embedding. For
classes that exhibit this kind of behavior, the generalization that can be guaranteed by
SVM’s is too weak to be of any practical value. Such examples exist also for classes of small
VC dimension, in which case learning by empirical risk minimization over the original class
would yield much better generalization bounds.

Before we elaborate any further on our results, let us explain the basic framework that
we work in. Consider an SVM specialist faced with some learning task. The first significant
decision she makes is the choice of kernel (or embedding) to be used for mapping the original
feature vectors of the training set into a Euclidean space (where later half space learning
algorithms will be applied). Assuming no prior knowledge on the nature of the learning
task, one can readily see that the best possible embeddings are those mapping each example
into a separate Euclidean dimension. We call such an embedding a trivial embedding. It
is easy to see that trivial embeddings cannot yield any useful generalization. The other
extreme case is when the learner bases her choice of embedding on the full knowledge of the
sample labels. In this case the redundant function that maps all positively labeled examples
to one point and all the negatively labeled examples to another, achieves perfect loading of
the data, alas, once again it yields no generalization. Practical reality is somewhere between
these two extremes: the learner does assume some prior knowledge and uses it for the choice
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of embedding. It is not at all clear how to model this prior knowledge. In this work we
consider the case where the prior knowledge available to the learner is encapsulated as a
collection of possible dichotomies of the domain feature vectors. The learner assumes that
the correct labeling of the examples is close to one of these dichotomies. This modeling is
very common in COLT research, and the collection of dichotomies is known as the concept
class. Given such a class, the learner wishes to find an embedding of the instance space
into a Euclidean space, so that every dichotomy in the class will be realized by a half space
over the images of the examples.

We assume that both the instance space and the concept class are finite, and denote
their cardinalities by n and m respectively. For sake of simplicity, we mainly focus on the
case m = n. The general case m ≥ n is briefly discussed in Section 6. Our main results are
as follows:

In Section 3 we show that, as n and m = n grow unboundedly, an overwhelming majority
of the family of finite concept classes of any constant VC dimension d cannot be embedded
in the class of r-dimensional half spaces, unless r (as a function in n) is asymptotically
larger than n1−1/d−1/2d

. Note that, for large values of d, this lower bound approaches the
trivial upper bound n achieved by the trivial embedding.

In Section 4 we address the issue of the margins obtainable by embeddings. We show
that, as n and m = n grow unboundedly, an overwhelming majority of the family of finite
concept classes of constant VC dimension d cannot be embedded in the class of half spaces (of
arbitrarily high dimension) with margin γ, unless γ (as a function in n) is asymptotically

smaller than
√

1/n1−1/d−1/2d . Note that, for large values of d, this upper bound on γ

approaches the trivial lower bound 1/
√

n achieved by the trivial embedding.
Furthermore, we show that our impossibility results remain qualitatively the same if the

notion of embedding is relaxed, so that for every concept in the original class there exists a
half space that classifies almost all of the embedded points like the original concept (rather
than demanding the existence of a half space that achieves perfect fit with the concept
dichotomy).

For large values of d, the lower bounds proven in Section 5 are almost tight because (as
mentioned above) they approach the trivial upper bound n. For small values of d, namely
d = 4 or d = 6, we show (in a less trivial manner) in Section 5 that these lower bounds are
tight up to a logarithmic factor.

Our results indicate that any universal learning machine, which transforms data to
a Euclidean space and then applies linear (or large margin) classification, cannot preserve
good generalization bounds in general. Although we address only two generalization bounds
(namely, the VC dimension and margin bounds), we believe that the phenomena that we
demonstrate applies to other generalization bounds as well. Our results may be interpreted
as showing that for a typical (or “random” or “common”) concept class of small VC di-
mension, an embedding of the class into a class of linearly separable dichotomies, inevitably
introduces a significant degree of over-fitting. While half spaces embeddings may be desir-
able from the computational point of view, since there are efficient algorithms (like SVM’s)
for learning via such embeddings, there are cases in which they result in a loss of the sample
complexity bounds that do exist for learning small VC dimension classes using empirical
risk minimization.
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To clarify the implications of our results, we would like to mention that these results do
not, of course, render learning machines of this type (like SVMs) useless. In fact, if most
of the important classes could be nicely embedded, who cares about the vast majority?1

Instead, our results indicate that the design of a “universal” learning machine (based on
embeddings in half spaces) is an overly ambitious goal if it is pursued without further
restrictions.

Most of our results are based on counting arguments and therefore only show the exis-
tence of ‘hard-to-embed’ classes (and that, indeed, they are the common case). However,
in Section 4.1 we discuss the (non-)embeddability of specific concept classes.

We believe that the design of analytic tools, that allow the study of embeddability of a
given concept class, will deepen the understanding of the embeddability question further.
(See Forster 2001, Forster et al. 2001 as first steps in this direction.)

2. Definitions

In this section, we formally define the central notions of this paper. We start with the general
notion of a concept class and the general notion of an embedding of one concept class into
another (Subsection 2.1). Then we pass to geometric notions like hyper-planes, half spaces,
and margins (Subsection 2.2). Afterwards we are prepared to formulate the general problem
of embedding an arbitrary finite concept class (represented by a Boolean matrix) of a fixed
VC dimension in the class of half spaces (Subsection 2.3). At the end of this section, we
present some notions related to a famous problem of Zarankiewicz (Subsection 2.4). These
notions are needed for proof technical reasons.

2.1 Concept Classes and Embeddings

The set of all functions from X to {0, 1} is denoted by 2X . A function from X to {0, 1}
is also called a concept over domain X ; each C ⊆ 2X is called a concept class over domain
X . Whenever we find it convenient, we identify a concept f : X → {0, 1} with the set
{x ∈ X : f(x) = 1} (and vice versa).

The central notion discussed in this paper is the notion of embedding of one concept
class into another.

Definition 1 A concept class C ⊆ 2X over a domain X is embeddable in another concept
class C′ ⊆ 2X ′ over a domain X ′ iff there exists a function ψ : X 7→ X ′ such that

∀f ∈ C,∃g ∈ C′,∀x ∈ X f(x) = g(ψ(x)) .

We also present some results on approximate embeddings. These are embeddings in
which some of the points in every concept class may be mis-classified by the embedding.
Formally:

Definition 2 A concept class C ⊆ 2X over a domain X is η-approximately embeddable in
another concept class C′ ⊆ 2X ′ over a domain X ′ iff there exists a function ψ : X 7→ X ′
1. Indeed, classes often studied in Computational Learning Theory research, such as Monomials and Deci-

sion Lists, can be embedded in Euclidean space of dimension exponentially smaller than that required
for the majority of classes.
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such that
∀f ∈ C,∃g ∈ C′ : |{x ∈ X : g(ψ(x)) 6= f(x)}| ≤ η|X | .

2.2 Separating Hyper-planes, Half Spaces and Margins

Consider the r-dimensional Euclidean domain Rr. The Euclidean norm is denoted by ‖ · ‖.
Sr−1 := {x ∈ Rr : ‖x‖ = 1} denotes the unit sphere in Rr; Br := {x ∈ Rr : ‖x‖ ≤ 1}
denotes the closed unit ball. The Euclidean hyper-plane induced by “weight vector” w ∈ Rr

and “threshold” t ∈ R is the set

H(w, t) = {x ∈ Rr : w · x = t} .

H(w, t) splits Rr into two half-spaces

H+(w, t) = {x ∈ Rr : w · x > t} and H−(w, t) = {x ∈ Rr : w · x < t} .

A hyper-plane or half space with threshold t = 0 is called homogeneous. By definition, the
concept class of r-dimensional Euclidean half spaces consists of all half spaces of the form
H+(w, t) for some w ∈ Rr and some t ∈ R. The subclass of r-dimensional homogeneous
Euclidean half spaces consists of all homogeneous half spaces of the form H+(w, 0) for some
w ∈ Rr. In the sequel, we assume without loss of generality that a weight vector w is
normalized to be of Euclidean length 1.

Definition 3 Consider two finite sets of points in the r dimensional unit ball Br, say S−
and S+. We say hyper-plane H(w, t) separates S− from S+ with margin γ if S+ ⊆ H+(w, t),
S− ⊆ H−(w, t), and γ is the Euclidean distance between H and S+ ∪ S−:

γ = min{|w · x− t| : x ∈ S+ ∪ S−} .

According to Definition 1, an embedding of a finite concept class C ⊆ 2X in r-dimensional
Euclidean half spaces is obtained by mapping each x ∈ X to a point ux ∈ Rr and by finding
for each concept f ∈ C a weight vector w = wf and a threshold t = tf such that H(w, t)
separates {ux : x ∈ X and f(x) = 0} from {ux : x ∈ X and f(x) = 1}. We may assume
without loss of generality that the points ux belong to the unit ball Br (contract Rr by a
scaling factor if necessary).2

Definition 4 We say that a finite concept class C can be embedded in r-dimensional (ho-
mogeneous) half spaces with margin γ if there exists an embedding that maps each x ∈ X
to a point ux ∈ Br such that, for each f ∈ C, there exists a (homogeneous) hyper-plane that
separates {ux : x ∈ X and f(x) = 0} from {ux : x ∈ X and f(x) = 1} with margin γ.

The latter definition can be relaxed by allowing a smaller margin (including mis-classifica-
tions) for an η-fraction of all instances:

Definition 5 We say that a finite concept class C can be η-approximately embedded in
r-dimensional (homogeneous) half spaces with margin γ if there exists an embedding that
maps each x ∈ X to a point ux ∈ Br such that, for each f ∈ C, there exists a subset
M ⊆ X of cardinality at most η|X | and a (homogeneous) hyper-plane that separates {ux :
x ∈ X \M and f(x) = 0} from {ux : x ∈ X \M and f(x) = 1} with margin γ.

2. Without this assumption, the margins associated with the embedding can be made arbitrarily large by
means of scaling.
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2.3 The Embedding Problem for Matrices of Small VC Dimension

Recall that S ⊆ X is called shattered by C if for each function f ∈ 2S there exists a function
g ∈ C such that f(x) = g(x) for all x ∈ S. The VC dimension of C is the size of the
maximum subset of X that is shattered by C (or “infinity” if there exist arbitrarily large
finite shattered sets).

Throughout the paper, we use Boolean matrices to represent finite concept classes. A
class C is represented by a matrix F of size m× n, where |C| = m, |X | = n, and Fi,j is the
value of the ith concept on the jth instance.

Definition 6 Let D(m, n, d) denote the family of Boolean matrices with m rows and n
columns that have VC dimension smaller than d.

Definition 7 Let E(m, n, r) denote the family of Boolean matrices with m rows and n
columns that can be embedded in the class of r-dimensional Euclidean half spaces.

As mentioned in the introduction, we study embeddings of concept classes (represented
by matrices) with low VC dimension into the class of Euclidean half spaces. Our basic
approach will be to derive a lower bound on the Euclidean dimension r from the inequality
|D(m, n, d)| ≤ |E(m, n, r)| (or slight variations of this inequality).

2.4 Some Technical Notions

We conclude this section with two technical notions that shall be needed in our proofs in
Section 3.

Definition 8 Let M be an m × n size matrix over {0, 1}. We say that M contains a
1-monochromatic rectangle of size s × t if there are sets of indices A ⊆ {1, . . . , m} and
B ⊆ {1, . . . , n}, where |A| = s and |B| = t, such that for all i ∈ A and all j ∈ B, the i, jth
entry mi,j of M is 1.

Definition 9 Let Z(m, n, s, t) denote the family of Boolean matrices with m rows and n
columns that do not contain a 1-monochromatic rectangle of size s× t.
Let z(m, n, s, t) denote the maximum number of 1-entries in any matrix in Z(m, n, s, t).

Note that we may interpret z(m, n, s, t) as the maximum number of edges in a bipartite
graph G, whose vertex classes have size m and n, respectively, subject to the condition that
G does not contain a complete bipartite s× t subgraph.

The following observation relates these combinatorial notions to classes of small VC
dimension.

Lemma 10 Z(m, n, 2d, d) ⊆ D(m, n, 2d). In other words, if a concept class has VC dimen-
sion 2d (and above) then its matrix representation contains a 1-monochromatic rectangle of
size 2d × d.

Proof Consider a matrix F that shatters a set Y = {y1 . . . y2d} of size |Y | = 2d. By
definition, it means that F contains concepts with every possible assignment in those 2d
places, including 2d concepts that assign 1 to y1 . . . yd and any other combination to the
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rest of the y’s. These concepts define a 1-monochromatic rectangle in F with 2d rows and d
columns. Therefore, any matrix that does not contain such a rectangle has VC dimension
smaller than 2d.

3. An Asymptotic Lower Bound on the Euclidean Dimension Needed by
Embeddings in Half Spaces

This section presents our results concerning the minimal dimension required to embed gene-
ral matrices (representing concept classes) of fixed VC dimension in half spaces. Our proofs
use known results for a combinatorial problem known as “the problem of Zarankiewicz”.

In order to provide lower bounds on the dimensions of half spaces needed for embeddings,
we shall show that there are many matrices of any fixed VC dimension. We shall compare
these bounds with known upper bounds on the number of classes that can be embedded in
half spaces in any fixed dimension Euclidean space.

The problem of determining z(m, n, s, t) was first suggested (for specific values of s, t),
by Zarankiewicz (1951), and later became known as “the problem of Zarankiewicz”. Bol-
lobás (1978) provides the following bounds, which are valid for all 2 ≤ s ≤ m, 2 ≤ t ≤ n:

z(m, n, s, t) < (s− 1)1/t(n− t + 1)m1−1/t + (t− 1)m (1)

z(m, n, s, t) ≥ l(m, n, s, t) :=
⌊(

1− 1
s!t!

)
m1−αn1−β

⌋
(2)

where
α := α(s, t) :=

s− 1
st− 1

and β := β(s, t) :=
t− 1
st− 1

.

Since the class Z(m, n, s, t) of matrices (viewed as bipartite graphs) is closed under edge
deletion, the following inequality obviously holds:

|Z(m, n, s, t)| ≥ 2z(m,n,s,t) ≥ 2l(m,n,s,t) = 2b(1− 1
s!t!)m1−αn1−βc

Assume that at least a fraction 0 < λ ≤ 1 of the matrices in Z(m, n, s, t) is embeddable
in the class of r-dimensional half spaces. It follows that

|E(m, n, r)| ≥ λ2z(m,n,s,t) ≥ λ2l(m,n,s,t) . (3)

If inequality (3) is violated for every r < r0, we may conclude that less than a fraction λ of
the matrices in Z(m, n, s, t) can be embedded in the class of half spaces unless we embed
into at least r0 Euclidean dimensions. We will use this basic counting argument several
times in what follows.

On the other hand, there are known bounds on the number of matrices of size m × n
that may be embedded in half spaces.

Theorem 11 (Alon et al., 1985) For every n, m, r:

|E(m, n, r)| ≤ min
h≤mn

(
8

⌈mn

h

⌉)(n+m)r+h+m
(4)
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The remainder of this section is devoted to a first application of the basic counting
argument. For sake of simplicity, we restrict ourselves to the case m = n and postpone the
general case m ≥ n to Section 6.

Theorem 12 Let s, t ≥ 2 be arbitrary but fixed constants. Then, for all sufficiently large n,
the following holds. Only a vanishing fraction 2−l(n,n,s,t)/2 of the matrices from the family
Z(n, n, s, t) is embeddable in the class of r-dimensional Euclidean half spaces unless

r = Ω

(
n1−α(s,t)−β(s,t)

log n

)
= ω

(
n1−1/s−1/t

)
.

Proof Let γ be an arbitrary but fixed constant such that α+β < γ ≤ 1 (like γ = 1/s+1/t
for instance), let m = n, h = n2−γ , and λ = 2−l(n,n,s,t)/2. From (3), we get

|E(n, n, r)| ≥ λ2l(n,n,s,t) = 2l(n,n,s,t)/2 . (5)

From (4), we get

|E(m, n, r)| ≤
(

8
⌈

n2

h

⌉)2nr+h+n

= (8 dnγe)2nr+n2−γ+n . (6)

According to the definition of l(m, n, s, t) in (2):

l(n, n, s, t) =
⌊(

1− 1
s!t!

)
n2−α−β

⌋
(7)

Combining (5), (6),( 7) and taking logarithms, we get

n(2r + n1−γ + 1) log (8 dnγe) ≥ 1
2

⌊(
1− 1

s!t!

)
n1−α−βn

⌋
≥ n

2

⌊(
1− 1

s!t!

)
n1−α−β

⌋
.

Cancelation by n finally yields

(2r + n1−γ + 1) log (8 dnγe) ≥ 1
2

⌊(
1− 1

s!t!

)
n1−α−β

⌋
. (8)

Now Theorem 12 follows immediately (using 0 < α + β < γ ≤ 1) because n1−α−β grows
asymptotically faster than n1−γ log n.

With some additional effort, Theorem 12 can be generalized to approximate embeddings:

Corollary 13 Let s, t ≥ 2 be arbitrary but fixed constants, and let γ be an arbitrary constant
such that α(s, t) + β(s, t) < γ ≤ 1. (γ = 1/s + 1/t would be a possible choice.) Then, for
all sufficiently large n, the following holds. Only a vanishing fraction 2−l(n,n,s,t)/2 of the
matrices from the family Z(n, n, s, t) is n−γ-approximately embeddable in the class of r-
dimensional Euclidean half spaces unless

r = Ω

(
n1−α(s,t)−β(s,t)

log n

)
= ω

(
n1−1/s−1/t

)
.
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Proof Suppose that K is an arrangement of n half spaces and n vectors in Rr that
represents a matrix F of Z(n, n, s, t). Then K represents a matrix F ′ n−γ-approximately
if, for all i = 1, . . . , n, the Hamming distance between the ith row in F and the ith row
in F ′ is at most n−γn = n1−γ . The number of the matrices that are n−γ-approximately
represented by K is therefore upper-bounded by(

nn1−γ
)n

= nn2−γ
.

In order to complete the proof, we may therefore perform similar calculations as before,
except that we have to expand the upper bound in Theorem 11 by the additional factor
nn2−γ

. These calculations end up at inequality

(2r + n1−γ + 1) log (8 dnγe) + n1−γ log(n) ≥ 1
2

⌊(
1− 1

s!t!

)
n1−α−β

⌋

instead of (8). Thus Euclidean dimension r exhibits the same asymptotic growth as before.

Combined with Lemma 10, this implies:

Corollary 14 Let d ≥ 2 be arbitrary but fixed. Let γ be an arbitrary constant such that
α(2d, d) + β(2d, d) < γ ≤ 1. (γ = 1/d + 1/2d would be a possible choice.) Then, for
all sufficiently large n, the following holds. Only a vanishing fraction 2−l(n,n,2d,d)/2 of the
matrices from the family D(n, n, 2d) is n−γ-approximately embeddable in the class of r-
dimensional Euclidean half spaces unless

r = Ω

(
n1−α(2d,d)−β(2d,d)

log n

)
= ω

(
n1−1/2d−1/d

)
.

4. Upper Bounds on the Margin Attainable by Embeddings in Half
Spaces

In this section we prove some upper bounds on the margin that an embedding of an arbitrary
class in half spaces may yield. We are going to employ two different techniques: a bound
based on a concrete parameter of the class, and a combinatorial counting argument over
the family of classes.

4.1 A Concrete Bound as a Function of Online Mistake Bounds

We present a rather simple technique that yields non-trivial upper bounds on the margins
that can be obtained for certain specific classes. The idea is to use the online learning
complexity of the class.

Recall that the online (or Mistake Bound) learning task for a class C of functions from
some domain X to {0, 1} is defined by a game between a ‘teacher’ and a ‘student’. The
teacher picks some function c ∈ C. Now the game runs in steps. At each step i the teacher
picks some xi ∈ X and presents it to the student. The student returns a label li ∈ {0, 1}
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and passes it to the teacher, who then tells the student the value c(xi) and picks xi+1. The
cost of such a run of the game is |{i : li 6= c(xi)}|. The Mistake Bound complexity of a class
C is the minimum over all students strategies of the maximum over all teacher strategies of
the cost of the run that is produced by these playing strategies. We denote it by MB(C).

Now, how does it relate to embeddings and margins? Let us recall the following well
known result:

Theorem 15 (Novikoff, 1962) Let S = ((x1, b1), . . . , (xs, bs)) be a sequence of {0, 1} labeled
points in the unit ball in Rn. If there exists a hyper-plane that separates {xi : bi = 0} from
{xi : bi = 1} with margin ≥ γ, then the online Perceptron algorithm makes at most 4/γ2

many mistakes on S. If, in addition, the separating hyper-plane is homogeneous, then the
upper bound improves to 1/γ2.

Tying these notions together we readily get:

Theorem 16 Pick any γ > 0. If a class C can be embedded in the class of (not necessarily
homogeneous) half spaces (in any dimension) with margin γ, then MB(C) ≤ 4/γ2. If, in
addition, the embedding uses only homogeneous half spaces, then MB(C) ≤ 1/γ2.

Proof The trick is to apply Novikoff’s theorem about the Perceptron algorithm. Let
ψ : X 7→ Rn be an embedding that achieves margins above γ for the class C. Now let
the learner use the following strategy: upon receiving a point xi+1 run the perceptron al-
gorithm on (ψ(x1), c(x1)), . . . (ψ(xi), c(xi)) and let li+1 be the label given to ψ(xi+1) by the
half space that the perceptron algorithm produces. By Novikoff’s theorem, if there exists
a half space that separates the images of the points that c labels 1 from the images of the
points that c labels 0 with margin ≥ γ, then the perceptron algorithm (and therefore, our
student) will make at most 4/γ2 mistakes (and at most 1/γ2 mistakes if the half space
happens to be homogeneous).

The above simple result can be readily applied to demonstrate that some of the simplest
classes cannot be embedded in half spaces with good margins. For example, let In be the
class of all initial segments of (1, . . . , n). Note that the VC dimension of In is 1 regardless
of the value of n. Just the same, it is not hard to see (and proven by Maass and Turán
1992) that MB(In) = blog(n)c.

Corollary 17 In cannot be embedded in the class of half spaces (in any dimension) with
margin above 2/

√
log(n). Furthermore, In cannot be embedded in the class of homogeneous

half spaces (in any dimension) with margin above 1/
√

log(n)

In spite of the simplicity of the above result, it has quite striking consequences for learn-
ing methods. Namely, for some of the most simple concept classes, while Empirical Risk
Minimization suffices for learning them efficiently (due to their constant VC dimension and
simple structure), once they are embedded in half spaces, the generalization bound that
relies on margins will grow to infinity with the size of the instance space!
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Note however that, as the mistake bound of a class C is always bounded from above
by log(|C|) (due to the Halving algorithm), the above idea cannot be used for obtaining
smaller upper bounds on the values of obtainable margins.3

In the following subsection, we turn to a counting technique, that yields stronger bounds,
but shows only existence of classes (rather then providing bounds for concrete classes).

4.2 Strong Margin Bounds for the Majority of Classes

In this section we are going to translate the lower bounds of Section 3 on the dimension of
embeddings, into bounds on obtainable margins. The translation is done via the random
projections technique. We use the following result:

Lemma 18 (Arriaga and Vempala, 1999) Let u ∈ Rr be arbitrary but fixed. Let R = (Ri,j)
be a random (k × r)-matrix such that the entries Ri,j are i.i.d. according to the normal
distribution N(0, 1). Consider the random projection uR := 1√

k
(Ru) ∈ Rk. Then the

following holds for every constant γ > 0:

Pr
R

[∣∣‖uR‖2 − ‖u‖2
∣∣ ≥ γ‖u‖2

] ≤ 2e−γ2k/8.

Corollary 19 Let w, x ∈ Rr be arbitrary but fixed. Let R = (Ri,j) be a random (k × r)-
matrix such that the entries Ri,j are i.i.d. according to the normal distribution N(0, 1).
Then the following holds for every constant γ > 0:

Pr
R

[
|wR · xR − w · x| ≥ γ

2
(‖w‖2 + ‖x‖2

)] ≤ 4e−γ2k/8.

Proof Consider the events
∣∣‖wR + xR‖2 − ‖w + x‖2

∣∣ < γ‖w + x‖2 (9)∣∣‖wR − xR‖2 − ‖w − x‖2
∣∣ < γ‖w − x‖2. (10)

According to Lemma 18 (applied to u = w+x and u = w−x, respectively), the probability
of a violation of (9) or (10) is upper-bounded by 4e−γ2k/8. It suffices therefore to derive
|wR · xR − w · x| < γ

2 (‖w‖2 + ‖x‖2) from (9) and (10). From

‖w + x‖2 = ‖w‖2 + 2w · x + ‖x‖2 and ‖w − x‖2 = ‖w‖2 − 2w · x + ‖x‖2, (11)

we conclude that
‖w + x‖2 − ‖w − x‖2 = 4w · x. (12)

Clearly, the analogous relation holds for the random projections:

‖wR + xR‖2 − ‖wR − xR‖2 = 4wR · xR. (13)

3. Using a much more involved method, it has been shown recently by Forster et al. (2001) that the
maximum possible margin for an embedding of In in the class of homogeneous half spaces is exactly

n

(∑n
l=1

(
sin π(2l−1)

2n

)−1
)−1

= π
2 ln n

+ θ
(

1
(ln n)2

)
.
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Applying (12), (13), the triangle inequality, (9), (10), and (11) (in this order), we accomplish
the proof as follows:

|wR · xR − w · x| =
1
4

∣∣‖wR + xR‖2 − ‖w + x‖2 + ‖w − x‖2 − ‖wR − xR‖2
∣∣

≤ 1
4

(∣∣‖wR + xR‖2 − ‖w + x‖2
∣∣ +

∣∣‖wR − xR‖2 − ‖w − x‖2
∣∣)

<
γ

4
(‖w + x‖2 + ‖w − x‖2

)
=

γ

2
(‖w‖2 + ‖x‖2

)
.

From Corollary 19, the following result is easily obtained:

Corollary 20 Let C be a set of m = |C| homogeneous half spaces of dimension r, and let
X be a set of n = |X | points in the unit ball Br. Assume that the smallest distance between
a point from X and the homogeneous hyper-plane H associated with a half space H+ from C
is at least γ. Let R be a random (k×r)-matrix such that the entries Ri,j are i.i.d. according
to the normal distribution N(0, 1). Then the following holds:

1. PrR

[∃w ∈ C, ∃x ∈ X : sgn(w · x) 6= sgn(RT w ·RT x)
] ≤ 4mne−γ2k/8.

2. If γ >
√

8 ln(4mn)/k, then C can be embedded in the class of k-dimensional half
spaces.

Proof Note that γ >
√

8 ln(4mn)/k is equivalent to 4mne−γ2k/8 < 1. The second state-
ment is therefore an immediate consequence of the first statement. The first statement can
be shown as follows. Let H+(w, 0) such that ‖w‖ = 1 be a fixed homogeneous half space
from C and x be a fixed point from X . By assumption, the distance between x and H(w, 0)
is at least γ: |w ·x| ≥ γ. If a random projection changes the sign of w ·x, it must change the
value of w · x by at least γ. According to Corollary 19, the probability for this to happen
is bounded by 4e−γ2k/8. Since there are mn choices for H(w, t) and x, the total probability
for a change of at least one of the signs is bounded by 4mne−γ2k/8.

Note that this result is independent of the original dimension r, and depends only on the
margin γ and the dimension into which we embed, k. From Corollaries 20 and 14, we
immediately obtain the main result of this section:

Theorem 21 Let d ≥ 2 be arbitrary but fixed. Then, for all sufficiently large n, the follow-
ing holds. Only a vanishing fraction 2−l(n,n,2d,d)/2 of the matrices from the family D(n, n, 2d)
is n−γ-approximately embeddable in the class of half spaces (of arbitrarily large dimension)
with a margin γ unless

γ = O

(√
ln(n) log(n)

n1−α(2d,d)−β(2d,d)

)
= o

(√
1

n1−1/2d−1/d

)
.

We briefly note (without proof) that one can derive the following result from Corollary 20
and the counting arguments given in the paper of Alon et al. (1985).
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Theorem 22 For all sufficiently large n, the following holds. Only a vanishing fraction of
the Boolean matrices of size n × n is embeddable in the class of half spaces (of arbitrarily
large dimension) with a margin γ unless

γ = O

(√
ln(n)

n

)
.

5. Tight Bounds for Classes of Low VC Dimension

We turn now to the question of what positive results can be achieved to complement our
negative results on the dimension required for embedding. Low dimension embeddings for
specific “interesting” classes can usually constructed by ad-hoc techniques. For instance,
the class of monomials over n boolean variables can be embedded in half spaces of dimension
n by associating a Euclidean dimension with each of the boolean variables, and treating the
“true” value as 1 and the “false” value as −1. The half space associated with a monomial
will simply have a 1 corresponding to a positive literal appearing in the monomial, a −1
corresponding to a negative literal appearing in the monomial, and a 0 for a variable that
does not appear in the monomial. In fact, this embedding is not only of low dimension (of
the order of log(|X |)), but also achieves margin Θ(1/n). Similarly, boolean decision lists
on n boolean variables can be embedded in n Euclidean dimensions. The sample point
transformation is the same as described above for monomials. The concept transformation
is similar, but uses, for each variable, a value that has an exponential dependency on the
location of the variable in the decision list, instead of the constants 1 and −1.

Contrary to these ad-hoc embeddings for specific classes, the type of results we seek is
for a more general family of classes:

For some fixed d, all matrices (or classes) of size n × n and VC dimension
2d may be embedded in half spaces of dimension r(d, n), for some function
r(d, n) = O(n1−1/2d−1/d).

Obviously, such a result would be interesting primarily for low values of d, where the
difference between r(d, n) and n (the dimension required by the trivial embedding) is signif-
icant. While we cannot present a general positive result, we do show that, for specific values
of s, t, there exist sub-families of Z(n, n, s, t) that can be embedded in half spaces of a di-
mension matching the corresponding lower bound. Although this result is weaker than can
ideally be hoped for, it shows that there are non-trivial cases, where the smallest Euclidean
dimension needed to embed a family of matrices can be determined quite accurately.

The main results in this section are as follows:

Theorem 23 For all n, the class of matrices Z(n, n, 2, 2) contains a sub-family F2×2(n)
that can be embedded in half spaces of dimension O(n1/2), but cannot be embedded in half
spaces of dimension o(n1/2/ log(n)).

Theorem 24 For all n, the family of matrices Z(n, n, 3, 3) contains a sub-family F3×3(n)
that can be embedded in half spaces of dimension O(n2/3), but cannot be embedded in half
spaces of dimension o(n2/3/ log(n)).
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The proofs of these theorems are given in Section 5.1 and 5.2. As in Section 3, the lower
bounds are obtained by the basic counting argument. The upper bounds are obtained by
exploiting the relationship between communication complexity and embeddings from the
paper of Paturi and Simon 1986). Section 5.1 presents the sub-families F2×2(n) and F3×3(n)
and applies the basic counting argument to them. Section 5.2 presents the corresponding
embeddings.

5.1 Lower Bounds for Classes of Low VC Dimension

We would like to demonstrate that the bound we achieve for the Zarankiewicz matrices
can be matched by an actual embedding for matrices of this type. The reason such results
can only be expected for specific (small) values of s and t is that, as commented in the
book of Bollobás (1978), the general lower bound for the Zarankiewicz problem is far from
being tight. We therefore consider specific values of s, t for which better lower bounds are
known. Furthermore, for these cases, constructions of the graphs that demonstrate the
lower bound on z(m, n, s, t) are also known (unlike the general lower bound, whose proof is
not constructive). We consider two such specific cases, and show that for these cases we can
construct an embedding in dimension close to our lower bound (using the improved results
for the Zarankiewicz problem available for these cases).

The first case we tackle concerns the class of graphs Z(n, n, 2, 2), namely, bipartite
graphs with two vertex sets of equal cardinality that do not contain a quadrilateral. For
this specific case, Bollobás (1978) shows the following construction:

Let q be a prime power, and let PG(2, q) be the projective plane over a field of order
q. Let V1 be the set of points in PG(2, q) and V2 be the set of lines in PG(2, q). An edge
(v1, v2) is included in the graph iff the point v1 is incident to the line v2. It is immediate to
verify that this graph indeed does not contain quadrilaterals (as any two points can only
be incident to a single line).

The number of points, as well as the number of lines, in the projective plane, assuming
we take q = p, a prime, is:

n =
p3 − 1
p− 1

= p2 + p + 1.

It is well-known that each point is incident to exactly p − 1 lines. We conclude that, for
each prime p and n = p2 + p + 1, there exists a Boolean (n × n)-matrix Fn with (p − 1)n
1-entries that does not contain a 1-monochromatic rectangle of size 2 × 2. Note that the
latter property is preserved by flipping 1-entries to 0. Denote by F2×2(n) the family of all
matrices of size n×n, where n = p2 + p + 1, that are constructed from Fn by flipping some
of the 1-entries into zeros. We conclude that F2×2(n) ⊆ Z(n, n, 2, 2) and

z(n, n, 2, 2) ≥ n(p− 1) ≥ n3/2(1− o(1))

A straightforward application of our basic counting argument shows that r = Ω(n1/2/ log n)
Euclidean dimensions are needed to embed each matrix from F2×2(n) in the class of r-
dimensional half spaces. In the next subsection, we show that O(n1/2) Euclidean dimensions
are enough.

Another specific construction that appears in the book of Bollobás (1978) is tailored to
the case s = t = 3. Again the construction is via geometry spaces over finite fields. This
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time the affine geometry space AG(3, p) of dimension 3 over the field GF(p) is used. For
the construction we choose an element q in GF(p) which is a quadratic residue if and only
if −1 is not a quadratic residue. We then define S(x), for a point x ∈ AG(3, p), to be the
sphere consisting of points y that satisfy:

3∑
i=1

(xi − yi)2 = q. (14)

We can now construct a bipartite graph, with n = p3 vertices in each of the vertex
sets V1 and V2. We connect the edge between vertices x ∈ V1 and y ∈ V2 iff x ∈ S(y)
(or, equivalently, y ∈ S(x)). The resulting matrix, say F ′n, contains no 1-monochromatic
rectangle of size 3× 3. The number of 1-entries in F ′n is p5 − p4. Let us denote the family
of matrices of size n × n obtained from F ′n by flipping some of 1-entries into zeros by
F3×3(n). Again, we have, F3×3(n) ⊆ Z(n, n, 3, 3), and a straightforward application of our
basic counting argument shows that r = Ω(n2/3/ log n) Euclidean dimensions are needed
to embed each matrix from F3×3(n) in the class of r-dimensional half spaces. In the next
subsection, we show that O(n2/3) Euclidean dimensions are enough.

5.2 Constructing Embeddings Through Communication Protocols

To construct embeddings we use a well-known connection between probabilistic communi-
cation complexity and embedding in half spaces. We use the model of unbounded error,
two sided, communication complexity (see the paper of Paturi and Simon 1986). In this
model, two players P0 and P1 are trying to compute a Boolean function f(x, y), where P0 is
given x ∈ {0, 1}n as input and P1 is given y ∈ {0, 1}n as input. Each player has unlimited
computational power, and may realize any distribution on the messages it transmits to the
other player. A protocol is said to calculate a function f(x, y), if for any possible input pair
(x, y), with probability exceeding 1/2 (over the randomness of the players), the protocol
will output the value of f(x, y). For a communication protocol A, we denote C(A) its
communication complexity, defined as the maximum over all possible inputs of the number
of bits exchanged between P0 and P1 during the run of the protocol. For a function f , we
define its unbounded error communication complexity to be:

Cf := min
Af

C(Af )

where the minimum is taken over all protocols Af that correctly compute f .
The function f to be computed in such a communication protocol may also be repre-

sented by a square Boolean matrix F , where the entry F (x, y) contains the value of f(x, y).
Paturi and Simon prove the following result (which is cited here with terminology adapted
to this paper):

Theorem 25 (Paturi and Simon, 1986) Let F be the matrix of a Boolean function f . Let
r be the smallest dimension in which there is an embedding of the class represented by F
into hyper-planes. Then, the unbounded error probabilistic communication complexity Cf

for the function f satisfies:

dlog(r)e ≤ Cf ≤ dlog(r)e+ 1
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Therefore, each communication protocol in this model for a function f with matrix F
implicitly represents an embedding of F in the class of half spaces of dimension exponential
in the communication complexity of the protocol (and vice versa). Let us now present
communication protocols for the functions whose matrices were introduced in the previous
subsection.

Recall that Fn ∈ F2×2(n) denotes the matrix from the family F2×2(n), n = p2 + p + 1,
that indicates the incidences between points and lines in PG(2, p). Assume processor P0

has as input a (binary encoding of the) point x in PG(2, p), while P1 has as input a (binary
encoding of the) line y in PG(2, p). Our protocol for the matrix Fn is based on the following
observation:

Fn has a 1 in position (x, y) if and only if the point x is incident to the line y. If we
represent a point (a 1-dimensional vector subspace of (GF(p))3) by a vector in that subspace,
and a line (a 2-dimensional vector subspace of (GF(p))3) by a vector that is orthogonal to
the subspace, we have that x is incident to y if and only if x · y = 0 (where “·” denotes the
inner product of the vector space (GF(p))3).

We can therefore use the following probabilistic communication protocol for the matrix
Fn:

Protocol 1

1. Processor P0 normalizes its input: if x1 6= 0, let x̂ = x/x1. Otherwise, let x̂ = x.

2. Processor P0 sends the value of x̂1 (one bit).

3. Processor P0 sends the value of x̂2.

4. Processor P1 solves the equation
∑3

i=1 x̂iyi = 0 for x̂3. Denote this solution by z.

5. The processors run the protocol, EQ, for testing the equality of z and x̂3 (see the
paper of Paturi and Simon 1986) and output the same bit as the EQ-protocol.

Theorem 26 Protocol 1 is a probabilistic communication protocol for the matrix Fn that
uses 3 + dlog(p)e = 1

2 log(n) + O(1) bits of communication.

Proof The correctness of the protocol is immediate: in step 4, processor P1 has the values
for y1, y2, y3, x̂1, and x̂2 and can therefore solve the linear equation. From the observation
above, a 1 in the matrix Fn corresponds to a solution of this equation. The EQ-protocol is
then used to check whether x̂ indeed solves this equation.

As for communication complexity, communicating the value of x̂1 takes just 1 bit (since
its value is either 0 or 1). Communicating the value of x̂2 takes dlog(p)e bits, and the
EQ-protocol of Paturi and Simon requires two additional bits.

Note that a slight modification of this protocol can be used in the case that some of the
1-entries in the matrix were changed to zeros:
In step 4 above, a check should be made to see if the entry represented by the solution to
this equation is 0. If this is the case, we can immediately output zero, even without running
the EQ-protocol.
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It follows that each matrix of the family F2,2(n) can be computed by a protocol that
exchanges 1

2 log n + O(1) bits. According to Theorem 25, each matrix from the family
F2,2(n) can be embedded in half spaces of dimension O(n1/2). Theorem 23 immediately
follows.

Let us now move to matrices from the class F3×3(n), n = p3, described in Subsection 5.1.
Recall that F ′n is the matrix from F3×3(n) that has a 1-entry in position (x, y) iff x and y
satisfy relation (14). Assume, once more, that processor P0 has as input a point x ∈ AG(3, p)
while processor P1 has as input a point y ∈ AG(3, p).

Before we describe a protocol for this matrix, let us mention a protocol for a problem
we call EQ2 (for Equality-2). In this problem, processor P0 is given an l-bit number x and
processor P1 is given two different l-bit numbers4 (z, z′). The function EQ2 is given by

EQ2(x, z, z′) = 1 ⇐⇒ (x = z ∨ x = z′).

Note that we assumed z 6= z′.

Lemma 27 There exists a probabilistic communication protocol for EQ2 that uses 5 bits of
communication (regardless of l).

Proof Paturi and Simon provided a two-dimensional half space embedding for the matrix
induced by the equality function, EQ, that checks whether two given l-bit numbers x and z
are equal. Clearly, this embedding can be converted into a three-dimensional homogeneous
half space embedding of EQ or, alternatively, ¬EQ. In other words, we may represent x as
(ξ1, ξ2, ξ3) ∈ R3 and z as (ζ1, ζ2, ζ3) ∈ R3 such that

x = z ⇐⇒
3∑

i=1

ξiζi < 0 and x 6= z ⇐⇒
3∑

i=1

ξiζi > 0.

Making use of z 6= z′, it follows that

(x = z ∨ x = z′) ⇐⇒
3∑

i=1

3∑
j=1

ξiξjζiζ
′
j =

(
3∑

i=1

ξiζi

)
·

 3∑

j=1

ξjζ
′
j


 < 0. (15)

Equation (15) shows that the matrix induced by the function EQ2 can be embedded in the
class of 9-dimensional half spaces. According to Theorem 25, there must be a probabilistic
communication protocol that uses at most 5 bits of communication.

We refer to the protocol for function EQ2 as the EQ2-protocol in what follows. Now
that we have the EQ2-protocol (exchanging at most 5 bits), we are ready to introduce our
protocol for the matrix F ′n:

Protocol 2

1. Processor P0 sends the values of x1 and x2 to processor P1.

4. While the model of Paturi and Simon requires inputs to both processors to be of the same length, we
may assume that P0 is given two l-bit numbers, and ignores one of them in its computation.
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2. Given x1, x2, y1, y2, y3, Processor P1 solves equation (14) for x3 and finds (at most)
two solutions. If no solutions exist, output 0. Otherwise, denote the solutions by z
and z′. Processor P1 informs P0 whether z = z′ or z 6= z′ (one bit).

3. If z = z′, the processors run the EQ-protocol such as to check whether x3 = z. If
z 6= z′, the processors run the EQ2-protocol such as to check whether x3 = z or x3 = z′.
They output the same bit as the EQ-protocol or the EQ2-protocol, respectively, does.

Theorem 28 Protocol 2 is a probabilistic communication protocol for the matrix F ′n, and
uses 6 + 2dlog(p)e = (2/3) log n + O(1) bits of communication.

Proof The communication complexity of Protocol 2 is immediate: Processor P0 sends x1

and x2, which are both elements of GF(p) and therefore require dlog(p)e bits each. Processor
P1 sends one bit in order to inform P0 of whether z = z′ or not. Afterwards, the processors
either run the EQ-protocol (at the expense of 2 bits) or the EQ2-protocol (at the expense
of 5 bits). This sums up to at most 6 + 2dlog(p)e bits of communication.

The correctness of the protocol is also immediate. Equation (14), solved by P1 in step
2 of the protocol, coincides with the equation that was used to define the 1-entries of the
matrix F ′n.

Again, a slight modification of the protocol may be used for matrices in F3×3(n) that
had some of their 1-entries flipped to 0:
Either P1 knows, after receiving x1 and x2, that the result is 0 (if all solutions to the
equation of step 2 correspond to entries that have been flipped to 0), or it knows that one
of the two possible solutions to this equation (say, w.l.o.g., z′), corresponds to an entry that
was flipped to 0. In the latter case, the EQ-protocol can be used to check whether x3 = z.
It follows that each matrix of the family F3,3(n) can be computed by a protocol that
exchanges (2/3) log n + O(1) bits. According to Theorem 25, each matrix from the family
F3,3(n) can be embedded in half spaces of dimension O(n2/3). Theorem 23 immediately
follows.

6. Conclusions and Open Problems

This work addresses the issue of what success guarantees can be proved for SVM like
learning, from the assumption that the classification of examples is close to a dichotomy
in some concept class of small VC dimension. Roughly speaking, we showed that neither
the VC dimension nor margins can provide a guarantee for the generalization ability of the
learning paradigm that embeds the feature space into Euclidean spaces and uses half-space
learning algorithms on the embedded images. In particular, our results apply to SVM as
well as other kernel based learning algorithms.

The most natural question that this research raises is what is the reason that SVMs do
work so well in practice. We see two directions in which the search for an answer should be
pursued: The first is to to look for other parameters that may guarantee generalization of
learning paradigms, and may not be subject to pessimistic results as displayed here. The
most natural candidate for this is the notion of sparsity (Ben-David, 2001). However there
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may be some other useful parameters to be discovered. The other potential research direc-
tion, and in a sense broader question, is the issue of modeling the learner’s prior knowledge.
In this paper we have been following the common COLT setup in which this knowledge is
formalized as a concept class. While this formulation is convenient for mathematical analy-
sis, it is not at all clear that it reflects many natural learning scenarios. There is definitely
a place for other formal notions aiming to formalize a learner’s prior knowledge, or bias,
that may reflect some practically common aspects that are not modeled well enough by the
notion of a concept class.

There is also a technical issue that, in spite of being a very natural extension of the
questions that this paper answers, is not completely covered by our results:

We proved that only a vanishing fraction of the Boolean (n× n)-matrices (representing
concept classes) of constant VC dimension can be embedded in half spaces with an Euclidean
dimension or a margin that is substantially better than the dimension or the margin of the
trivial embedding. A natural question to ask is to what extent do these results carry over
to non-quadratic matrices.

Since the class of (m×n)-matrices such that m ≥ n contains the class of (n×n)-matrices,
the full familyD(m, n, 2d) can clearly not be embedded in a lower-dimensional space (or with

a larger margin) than the family D(n, n, 2d). Thus, the bounds r = Ω
(

n1−α(2d,d)−β(2d,d)

log n

)
and γ = O

(√
ln(n) log(n)

n1−α(2d,d)−β(2d,d)

)
from Corollary 14 and Theorem 21, respectively, apply for

any family of the form D(l, k, d) as long as n ≤ min{k, l}. The point that remains un-
answered by this simple consideration is the relative fraction of the matrices in such a class
that cannot be embedded in half spaces of smaller dimension. We conjecture that only
a vanishing fraction of the matrices from D(m, n, 2d) can be embedded in a substantially
lower-dimensional space (or with a substantially larger margin). We must admit, however,
that our current proof technique (the detour on the problem of Zarankiewicz) only leads
to sort of “weak” generalizations. For instance, if m = nk for some constant k, the lower
bound on the Euclidean dimension r from Corollary 13, namely

r = Ω

(
n1−α(s,t)−β(s,t)

log n

)
,

becomes

r = Ω

(
n1−k·α(s,t)−β(s,t)

log n

)
.

Likewise, the bound

r = Ω

(
n1−α(2d,d)−β(2d,d)

log n

)

from Corollary 14 becomes

r = Ω

(
n1−k·α(2d,d)−β(2d,d)

log n

)
,

a bound being completely useless for k ≥ d. This raises the question whether less trivial
embeddings in half spaces become possible when the size of the concept class comes close to
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the maximal possible size (which, by Sauer’s Lemma, is
∑d

i=0

(
n
i

)
= θ(nd)). We conjecture

however that our proof technique, though quite successful when applied to quadratic matri-
ces, does not show the right picture for matrices of arbitrary shape. We leave the problem
of inventing more powerful techniques for the general case as an object of future research.

Another technical issue that seems to not be completely solved is tightening the lower
bound on the problem of Zarankiewicz. As evident from (1) and (2), the upper and lower
bounds on z(m, n, s, t) are not tight. However, for our purposes, the gap between them
is not very significant. In fact, using (1) instead of (2) in the proofs of Section 3 causes
the minimal dimension required for embedding, as specified in Corollary 10, to be changed
from ω

(
n1−1/2d−1/d

)
to ω

(
n1−1/d

)
. Therefore, any advances in proving better bounds on

the problem of Zarankiewicz can only affect very minor changes in the results presented in
Section 3.

Acknowledgments

This work has been supported in part by the ESPRIT Working Group in Neural and
Computational Learning II, NeuroCOLT2, No. 27150. The authors gratefully acknowledge
the support of the German-Israeli Foundation for Scientific Research and Development
Grant I-403-001.06/95. Some of the research described in this work was done while the
second author was a graduate student at the Department of Computer Science, Technion,
Haifa, Israel. The third author was supported by the Deutsche Forschungsgemeinschaft
Grant SI 498/4-1.

References
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