
Journal of Machine Learning Research 4 (2003) 465-491 Submitted 5/01; Published 8/03

Query Transformations for Improving the Efficiency of ILP Systems

Vı́tor Santos Costa VITOR@COS.UFRJ.BR

COPPE/Sistemas, UFRJ, Brazil and
LIACC, Universidade do Porto, Portugal

Ashwin Srinivasan ASHWIN.SRINIVASAN@COMLAB.OX.AC.UK

Oxford University Computing Laboratory
Wolfson Bldg., Parks Rd, Oxford, UK

Rui Camacho RCAMACHO@FE.UP.PT

LIACC and FEUP, Universidade do Porto, Portugal

Hendrik Blockeel HENDRIK.BLOCKEEL@CS.KULEUVEN.AC.BE

Bart Demoen BART.DEMOEN@CS.KULEUVEN.AC.BE

Gerda Janssens GERDA.JANSSENS@CS.KULEUVEN.AC.BE

Jan Struyf JAN.STRUYF@CS.KULEUVEN.AC.BE

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001, Leuven, Belgium

Henk Vandecasteele HENK.VANDECASTEELE@PHARMA DM.COM

PharmaDM
Ambachtenlaan 54D, B-3001, Leuven, Belgium

Wim Van Laer WIM .VANLAER@CS.KULEUVEN.AC.BE

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001, Leuven, Belgium

Editors: James Cussens and Alan M. Frisch

Abstract

Relatively simple transformations can speed up the execution of queries for data mining consider-
ably. While some ILP systems use such transformations, relatively little is known about them or
how they relate to each other. This paper describes a number of such transformations. Not all of
them are novel, but there have been no studies comparing their efficacy. The main contributions of
the paper are: (a) it clarifies the relationship between the transformations; (b) it contains an empiri-
cal study of what can be gained by applying the transformations; and (c) it provides some guidance
on the kinds of problems that are likely to benefit from the transformations.

Keywords: Inductive Logic Programming, Program Analysis

1. Introduction

Since 1991 Inductive Logic Programming (ILP) systems have been used to construct predictive
models for data drawn from diverse domains. These include the sciences (King et al., 1992, 1996;
Muggleton et al., 1992), engineering (Feng, 1992; Dolˇsak and Muggleton, 1992), language process-
ing (Zelle and Mooney, 1993; Cussens, 1997), environment monitoring (Dˇzeroski et al., 1994), and
software analysis (Bratko and Grobelnik, 1993).

c©2003 Santos Costa, Srinivasan, Camacho, Blockeel, Demoen, Janssens, Struyf, Vandecasteele and Van Laer.

SANTOS COSTA et al

Like many other algorithms in the field of machine learning, ILP algorithms construct “hy-
potheses” for data by performing a search through a large space. Such a search typically involves
generating and then testing the quality of candidates. Testing a candidate hypothesis involves exe-
cuting a query in first-order logic against the data. Improvements in efficiency thus result from (A)
minimizing, to the best extent possible, the number of candidates generated; and (B) maximizing,
to the best extent possible, the efficiency of testing each candidate.

Problem (A)—minimizing the search space—has received a lot of attention in ILP research.
This has resulted in the development of powerful language bias specification mechanisms that limit
the size of the search space (N´edellec et al., 1996) the study of refinement operators that allow one
to efficiently navigate through a hypothesis space (van der Laag and Nienhuys-Cheng, 1998), etc.

Problem (B)—efficient testing of candidate hypotheses—does not appear to have received as
much attention. It is the less pressing problem: however, in the light of the advances that have
been made on techniques for minimizing the search space, the issue does become important. There
has been some previous work of a stochastic nature (Srinivasan, 1999; Sebag and Rouveirol, 1997).
These reduce the evaluation effort at the cost of being correct only with high probability. This paper
is concerned with exact transformations, extending the work first reported by Santos Costa et al.
(2000). In that paper, the authors illustrated that query execution was a very high percentage of total
running time. They also proposed two simple transformations that converted a first order query into
an equivalent one which was more efficient to execute. Empirical evidence presented suggested
that under some conditions the transformations could significantly improve the efficiency of an ILP
system—there, the system Aleph (Srinivasan, 2001). Here, we extend this work in the following
ways: (1) we consider two further transformations; (2) we describe how the four transformations
relate to each other; (3) we present a theoretical analysis of the transformations; and (4) we provide
empirical evidence of the behaviour of the transformations on artificial and real-world problems.

The paper is organised as follows: in Section 2 we outline a simple procedure that serves as a
model for many ILP algorithms. Section 3 describes the four transformations. Section 4 provides
an analysis of the computational complexity of the transformations as well as the execution of the
original and transformed queries. An empirical evaluation of the approach is presented in Section
5. Section 6 concludes the paper. The paper is accompanied by two appendices containing material
relevant to Sections 3 and 5.

2. A Simple ILP Implementation

We adopt the following informal prescription for an ILP algorithm, based on Muggleton (1994).
We are given: (a) background knowledgeB in the form of a Prolog program; (b) some language
specificationL describing the hypothesis space; (c) an optional set of constraintsI on acceptable
hypotheses; and (d) a finite set of examplesE such that none of the elements of setE are derivable
from B. The set is divided into a set of positive examplesE+ and a set of negative examplesE−.
The task is to find some hypothesisH ∈ L such that (1)H is consistent with theI ; (2) theE+ are
derivable fromB∪H; and (3) theE− are not derivable fromB∪H.

Several prominent ILP systems such as CProgol (Muggleton, 1995), Golem (Muggleton and
Feng, 1990), and FOIL (Quinlan, 1990) use a simple iterative procedure to construct the hypothesis
H one clause at at time. Figure 1 shows one such procedure, reproduced with minor changes
from Srinivasan (1999). We refer the reader to this paper for proofs of correctness and complexity
arguments. Here we will assume the following:

466

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

generalise(B, I ,L ,E): Given background knowledgeB, hypothesis constraintsI , a
finite training setE = E+∪E−, returns a hypothesisH in L such thatB∪H
derives theE+.
1. i = 0
2. E+

i = E+, Hi = /0
3. whileE+

i 6= /0 do
(a) incrementi
(b) Traini = E+

i−1∪E−

(c) Di = search(B,Hi−1, I ,L ,Traini)
(d) Hi = Hi−1∪{Di}
(e) Ep = {ep : ep ∈ E+

i−1s.t.B∪Hi |= {ep}}.
(f) E+

i = E+
i−1\Ep

4. returnHi

Figure 1: A simple ILP implementation. The functionsearch()is some search procedure that re-
turns one clause after evaluating alternatives in some search-space of clauses, all of which
are inL .

A1. On each iteration,search()will examine a finite number of clauses;

A2. For each clause examined,search()will check (at least) the derivability of each example in
Traini ;

A3. The check for derivability always terminates; and

A4. The actual proofs of derivability of an example are irrelevant to evaluating the ‘goodness’ of
a clause.

These assumptions hold not only for ILP systems that use an algorithm similar to the one in Figure 1,
but for a much broader range of relational learning systems, including systems that induce trees, e.g.
SRT (Kramer, 1996), instance based learners e.g. RIBL (Emde and Wettschereck, 1996) etc. Our
results are equally relevant for those approaches. The transformations we propose in the next section
are concerned with improving the efficiency of derivation checks arising from Assumption A2.

3. Four Query Transformations

All the transformations we study are ‘correct’ in the following sense: if a clauseDi is transformed
into a clauseD′i, thenB∪Hi−1∪{D′i} derives exactly the same examples inTraini asB∪Hi−1∪{Di}.
If Assumption A4 holds, the identification of the best clause bysearch()will then be unaffected.

An implementation (in Prolog) of all the transformations described here is available on request
from any of the authors. The following sections will use terminology from logic programming
(Lloyd, 1987) and from global analysis (Cousot and Cousot, 1992).

467

SANTOS COSTA et al

3.1 The Theta-transformation tθ

We are concerned here with clauses of the formHead : −BodywhereBody is a conjunction of
goalsG1, ...,Gn (in the Prolog sense, or literals in the more traditional logical sense). Each of the
Gi are meta-calls to user-defined or built-in predicates. In general, letN be an upper-bound on the
number of solutions to any of theGi. It follows straightforwardly that in the worst-case, the number
of meta-calls isO(Nn). LoweringN requires a re-appraisal of predicate definitions used by clauses
(either by re-encoding of some predicates, or by removing them entirely). We do not pursue this
here, and concentrate instead on lowering the value ofn.

A straightforward reduction in the number of goals being tested (thus loweringn) is achieved
by eliminating obviously redundant ones. A simple logical check for this during the execution of
the steps described in Figure 1 is as follows. On iterationi of the procedure in Figure 1, letP denote
B∪Hi−1. LetC be a clause being examined in a search. Then, a literall in C is redundant iffP∪{C}
is logically equivalent withP∪{C′} whereC′ = C−{l}.

From this, it is easy to show thatl is redundant iffP∪ {C} |= {C′}. This constraint, while
providing an exact test for literal-redundancy, is expensive to implement (with a resolution-based
theorem prover like that in YAP, it requires checking for the proof of inconsistency from the setP∪
{C}∪{¬C′}). Instead, we will employ a simpler test based on the subsumption relation (Nienhuys-
Cheng and De Wolf, 1997). Recall thatC subsumesC′ iff there is some substitutionθ such that
Cθ⊆C′ and ifC subsumesC′ then{C} |= {C′}. Clearly therefore ifC subsumesC′ thenP∪{C} |=
{C′} andl is redundant (the reverse is not true, and hence we call it a “weak” test for redundancy).

We call the transformation that removes a set of redundant goals from a clause theTheta-
transformation. It is evident that a transformation that removes redundant goals is correct. We
use an approximation of the clausal-subsumption test (see Section 4) that is relatively inexpensive
to perform and retains the property of correctness.1 While this is a simple transformation technique,
it is not clear from descriptions of existing ILP systems whether they actually employ it during
the search.2 In general, while the efficacy of the transformation will depend on the enumeration
operator employed by the search function (that is, whether it is prone to introduction of redundant
literals), we expect it to be more useful when the background predicates are non-determinate.

3.2 The Cut-transformation t!

We observe that when executing a conjunction of goalsG1, ...,Gn, failure of a goalGi will result
in attempting to generate more solutions for goals earlier in the sequence. This effort is useless if
these solutions do not alter the computation ofGi . Thecut-transformation, t! , exploits the notion of
goal independence by partitioning the set of goals in a clause into classes such that goals in different
classes are independent. We will execute each class in sequence, and use the pruning operator ! to
avoid any backtracking between classes.

In pure logic programs, goals depend on each other because they share variables. Given a
functionvars(T) that returns all variables in the termT, two goalsGi andGj are said toshare, that
is the relationShares(Gi ,Gj) holds, when:

1. Significant work has been spent on correct and efficient implementations of subsumption tests (Kietz and L¨ubbe,
1994; Scheffer et al., 1996), but for the goals of this paper our simple implementation is good enough.

2. Programs like WARMR (Dehaspe and Toivonen, 1999) perform extensive checks to ensure that clauses subsumed
by others that have previously been shown to be “useless” are not examined further. This is more elaborate than the
proposal here, which simply checks for redundant literals within a clause.

468

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

i = j ∨ vars(Gi)∩vars(Gj) 6= /0

The definition ensures that the relationSharesis reflexive and symmetric. Its transitive closure
Linked, defined as the smallest transitive relation that is a superset ofShares, is reflexive, symmetric
and transitive, and therefore an equivalence relation.

Given a set of goalsG = {G1, . . . ,Gn}, we shall name the equivalence classes established by
Linked as I1, . . . , Im. If two goals are in the same equivalence class, we will say they may bede-
pendent, otherwise we will say they areindependent. We would like to divide the original clause
into several conjunctions of independent goals and execute them separately.3 To do so, we place the
goals in each classIi in a conjunctionGi . Our notion of dependence is a safe approximation of the
dependencies that can possibly occur at run-time, because as soon as two goals have a variable in
common they belong to the same equivalence class. Moreover, the computation of the equivalence
classes is efficient.

In this approximation all goals that include a head variable or that share variables with one such
goal will belong to the same independence class. Often, we know beforehand that head variables
will be grounded before calling the body. Clearly, such variables cannot introduce sharing. To take
advantage of this extra information, we classify variables as eitherGroundedor PossiblySharing,
and definevars(T) to return allPossiblySharingvariables inT. More sophisticated analysis is
possible, as discussed in Appendix A.

To effectt! it is sufficient to implement the following procedure:

1. Given the original clause:

H :- G1, . . . , Gi, . . . , Gn.

classify all variables inH,G1, . . . ,Gn asGroundedorPossiblySharingand compute the equiv-
alence classes for the (approximated) sharing relation.

2. Number the goal literals according to the equivalence class they belong to:

H :- G1 j , . . . , Gik, . . . , Gnl.

3. Reorder the literals in the clause according to the class they belong to:

H :- Ga1, . . . , Gb1, . . . , Gcm, . . . , Gdm.

4. We are interested in any solution, if one exists. Thus we need to compute every class once
and if a class has no solution, the computation should wholly fail. The following program
transformation usescut to guarantee such a computation:

H :- Ga1, . . . , Gb1, ! , . . . , ! , Gcm, . . . , Gdm.

3. McCreath’s LIME system (McCreath, 1999) works by putting together conjunctions of what he calls ‘simple clauses’.
These correspond to our equivalence classes. LIME is however restricted to dealing with determinate ground back-
ground knowledge.

469

SANTOS COSTA et al

The transformation is correct in the sense that the examples derivable before and after the trans-
formation are the same. Step (3) is correct because the switching lemma allows us to reorder goals.
Step (4) is correct because whenever we introduce a new cut, all goals before the cut are independent
of all goals after the cut. Backtracking to before the cut therefore could never result in new solutions
for the goals after the cut. A more complete discussion is given by Santos Costa et al. (2000).

3.3 The Once-transformationto

The cut transformation just described ensures that the search for each independent set of subgoals
always stops at finding the first solution. Notice that the transformed body goalq1, !,q2, !, . . . ,qn can
also be written asonce(q1),once(q2), . . . ,once(qn) where the meta-predicateonce is defined as

once(X):- X, !.

While at the clause level theonce constructs have the same effect as the cuts, they have the advan-
tage that they can be nested, whereas cuts cannot.

The objective is to fine-tunet! by processing each set of independent goals in more detail. We
start from the observation that the data guiding the successful application of the cut-transformation
was that certain variables are known not to share at runtime. We can improve the partitioning process
further by using extra data for each non-head variable and by taking advantage of Prolog’s left-to-
right selection function. More precisely, we shall use prior knowledge on whether a literal grounds
some of its arguments, and on whether a literal cannot cause its arguments to share by considering
the status of each variable, as we move from goal to goal. This will allow us to transform each
independent set of goals by considering the variables grounded by the first literal just like the ground
head variables in the cut transformation. We then apply the transformation recursively and refine
each independent set of subgoals into subsubsets.

Example 1 Consider the queryp(X,Y,Z), q(X,Y,U), q(X,Z,V). If p grounds X and cannot cause
Y and Z to share, thenq(X,Y,U) and q(X,Z,V) do not share, and after the call to p they can be
executed independently.

We therefore ‘look inside’ each equivalence class returned by thet! . First, we find a prefix of one or
more literals such that each literal will ground some of its arguments and it is known not to cause
sharing among the others, then we apply the cut transformation on the rest of this subgoal, treating
the grounded variables just like ground head variables.

We call this transformation theonce-transformationor to. Blockeel et al. (2000b) describe two
different versions ofto. The dynamic version transforms queries during their execution, which
results in an overhead but which also makes it possible to check groundness and sharing during
execution instead of having to pre-compute a safe approximation. However, we only present the
static version here.

For the static version, there is the open issue of how to estimate which literals ground or cause
sharing between which arguments. It is reasonable to assume that such information is provided
either by the user or through analysis. For instance, in many ILP data sets most predicates are
defined by ground facts or range-restricted clauses only; such predicates always ground all their
arguments (and hence do not cause sharing). However, a more sophisticated analysis is also possible
(see Appendix A).

470

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

once-transform(q):
let q = l1, l2, . . . , ln
find the smallestk s.t. there exists a partitionP of {lk+1, . . . , ln} s. t.∀qi,qj ∈ P :

V(qi)∩V(qj)⊆GroundedVars({l1, . . . , lk}) and
∀v∈V(qi),w∈V(qj) : {v,w} 6∈ PossiblySharing({l1, . . . , lk})

for all qi ∈ P : once-transform(qi)

Figure 2: The once-transformation algorithm.GroundedVars(G) contains all variables grounded
by a call toG. PossiblySharing(G) is the set of all pairs of variables that may share after
a call toG.

A high level description of the once-transformation algorithm is shown in Figure 2. Essentially,
the algorithm finds a prefix of a conjunction such that this prefix grounds enough variables for
the rest of the conjunction to contain independent subgoals; then it is called recursively on these
subgoals. Note that, similar to the cut transformation, we assume that the order of independent
groups of literals may be switched but the relative order of literals that are dependent of each other
does not change.

3.4 The Smartcall-transformation ts

The smartcall-transformationts, called thus for historical reasons, was originally described by Bloc-
keel (1998). The basic idea is as follows. ILP systems typically generate a clause by adding literals
to (or refining) a clause encountered earlier (itsparent). Assume a clausec = h← p,q has as
parenth← p. The parent clause has been evaluated before, which means at some point it was
computed which factshθ are derived by the clause. If theseθ are remembered, we can exploit
this in two ways. Firstly, for the refined clause we need to check derivability of these facts only,
because the facts derivable by the new clause are necessarily a subset of the examples derivable
by its parent. Secondly, each derivability test can itself be simplified, and this is exactly what the
smartcall-transformation does. Consider the equivalence classesIi of c, as mentioned above. Each
class can be checked independently of the others. For thoseIi for which Ii ⊆ p, a solution must exist
because there is one for the wholep. Hence, when testing the new clause with a head substitution
θ, we only need to check thoseIi that contain literals that were added during refinement.

Example 2 Consider a clause P =p(X) :- a(X,Y), b(X,Z) to which during refinement a literal
c(X,U) is added, resulting in

Q = p(X) :- a(X,Y), b(X,Z), c(X,U).

We have

t!(Q) = p(X) :- a(X,Y), !, b(X,Z), !, c(X,U).

If P is known to derive a specific fact p(e), we know that the goals a(e,Y) and b(e,Z) must have
solutions. Moreover, c(e,U) can be checked independently from these goals. Hence, ts can drop the
first two equivalence classes, yielding ts(Q) = p(X) :- c(X,U) .

If instead of c(X,U) we add c(X,Y), then we get

471

SANTOS COSTA et al

t!(Q′) = p(X) :- a(X,Y), c(X,Y), !, b(X,Z).

Now b(X,Z) can still be dropped, but a(X,Y) cannot, because even when we know the goal a(e,Y)
has a solution, the conjunction(a(e,Y),c(e,Y) may not have any.

The smartcall-transformation is correct in the following sense :given that an example was de-
rived by the parent clause, it can be derived by the transformed clause if and only if it can be derived
by the original clause. The emphasized condition need not be fulfilled for the other transformations.
It also implies that in order to use the smartcall-transformation, a list of all the facts derived by the
parent clause (its “coverage list”) needs to be available. This may not be feasible in all ILP systems;
more specifically, when using a greedy (beam) search or iterative deepening, the number of clauses
for which the coverage list needs to be kept would typically be small; but for exhaustive searches
(best-first,A∗, . . .) that keep a long queue of clauses to be refined, the number of clauses multiplied
with the number of examples might become prohibitively large.

3.5 Composition of Transformations

One can combine transformations by applying them one after another to a query. For brevity we
introduce the notationtab wheretab(c) = tb(ta(c)).

Composition of transformations is not commutative, therefore we respectively have 12, 24 and
24 possibilities for composing 2, 3 or 4 of the transformations. We can reduce the number of
possibilities by remarking that

• to implicitly performst! , hence a combination of both is equivalent toto;

• Since bothtθ and ts remove literals, they should always be applied beforet! or to. Indeed,
removal of literals may cause equivalence classes to “fall apart”. Thus,t!(tθ(c)) may have
more cuts thantθ(t!(c)). For an example, considerp(X,U), q(X,Y), p(Y,V), p(a,U),
q(a,b), p(b,V) .

• For the same reason,tθ should come beforets.

Hence when applying multiple transformations the optimal order is: firsttθ, nextts, and then either
t! or to. Figure 3 shows a lattice that contains all the ordered combinations of transformations that
may be useful; the lattice is constructed according to the “. . . implicitly performs. . . ” relation.

4. Analysis of Transformations

The time that we take to test each candidate clause will have two components: the time we take to
apply the transformation plus the time to execute the transformed query.

4.1 Transformation Complexity

We will use the following symbols in analysing the complexity of transforming a clause:v, the
maximum number of variables in a literal; andN, the number of literals in the query.

472

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

smart-cut

theta-once

once

theta-cut

smart-once

theta-smart-once

ID

thetasmartcall
cut

theta-smart

theta-smart-cut

Figure 3: Lattice generated by the “. . . implicitly performs . . . ” relation among transformations.
Transformations in the shaded area can only be applied under certain conditions.

4.1.1 COMPLEXITY OF tθ

Our implementation oftθ is a more efficient but safe approximation of the computation of a reduced
clause underθ-subsumption (Nienhuys-Cheng and De Wolf, 1997). The transformation tries to re-
move each literalli in turn by doing a subsumption test to see whether the query without the given
literal is equivalent to the original queryq. This subsumption test is a polynomial time approxima-
tion of θ-subsumption. The algorithm computes the most general unifierθ of li and a literal of the
remaining partqr . For each unification it skolemizes the original queryqθ andqr . If qθ is a subset
of qr thenli is redundant and can be removed. The subset test in our implementation isO(N2) (but
it could be done inO(N logN)). The overall complexity oftθ is thenO(N4) (optimally O(N3 logN))
because the subset test is repeated for each possibleθ and for eachli .

4.1.2 COMPLEXITY OF t!

The dominant component oft! stems from calculating groups of dependent literals. The algorithm
starts with an empty set of groups. In thei-th iteration it creates a new group containing thei-th
literal in the clause,{li}, and merges this group with all existing groups that share variables withli .
Testing if a groupj shares variables withli is O(njv) with nj the number of literals in the group.
This linear intersection test is possible because the algorithm keeps a sorted list of variables for each
group. Performing the intersection test on all groups isO(iv) because∑ j nj = i−1. Now assume
gi groups have been identified that share with{li}; these have to be merged. Merging one group is
O(iv), so merginggi groups isO(gi · iv). The total complexity oft! is T(N) = O

(
∑N

i=1 iv+gi · iv
)

=
O

(
N2v+Nv·∑N

i=1gi
)

= O(N2v). The last step is possible because∑N
i=1gi < N.

4.1.3 COMPLEXITY OF to

The implementation ofto first finds independent groups of literals using the same algorithm as the
cut-transformation. If all literals are in the same group then the algorithm grounds the variables of

473

SANTOS COSTA et al

the first literal and calls itself recursively for the other literals. If the literals are partitioned into
several groups then the algorithm does a recursive call for each group. In the first case the time
complexityT(N) = O(N2v)+T(N−1) with v the maximum number of variables in a literal andN
the number of literals in the query. If each recursive call is of this type, then the total complexity is
O(N3v). In the second caseT(N) = O(N2v)+∑gN

i=1 T(ni) with gN > 1 the number of subgroups and
ni the number of literals in subgroupi. It can be shown that the worst case isgN = 2, n1 = 1 and
n2 = N−1.4 The overall complexity isO(N3v) for both cases.

4.1.4 COMPLEXITY OF ts

The ts transformation splits the queryq = qprev∧ qnew in a partqprev that is known to succeed
and the new partqnew. It first partitionsqprev into independent groups using the same algorithm
as the cut transformation and then removes all groups that do not share variables withqnew. The
partitioning into dependent groups is dominant, hence giving Smartcall the same complexity as the
cut transformation.

All transformations are thus polynomial in the length of the clause. Note that while the trans-
formation overhead can grow large for long clauses, evaluation time for the untransformed clause
can be exponential inN, so that the net gain obtained by transforming the clause can be expected to
increase withN.

4.2 Execution Complexity

We now examine the complexity arising from executing a transformed query with a view to estimat-
ing the gain in efficiency obtained from performing a transformation. We further consider estimates
of average gains only, as some of the transformations cannot always guarantee efficiency gain. We
will use the following notation:

• q represents a query with literalsl1, l2, · · · , lN

• N is the number of literals in the query (as before)

• e is the number of examples

• b is the average branching factor of the SLD tree of the query and can be seen as a measure
of non-determinacy of the data

• d is the depth of the SLD tree

• qi andmare defined byt!(q) = q1, !,q2, !, . . . ,qm, !; we call theqi independent subgoals

• di is the depth of the SLD tree generated byqi

• Ni is the number of literals inqi

4. To see this, note thatT(N− i)+T(i) < T(N−1)+T(1) < T(N) whenT is a superlinear function and 1< i < N. In
our caseT has to be superlinear because it contains anN2 term. The demonstrandum follows by recursively applying
these inequalities on the terms in∑i T(ni).

474

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

4.2.1 COMPLEXITY OF tθ

The effect oftθ is just to reduce the length of a query. Since the cost of evaluating a query is
exponential in its length, it may yield significant results, even when only a single literal is removed.
If the removed literal is non-determinate and may succeedk times, then the SLD-tree for the query
will be reduced by a factork. If it is determinate, we still save a number of meta-calls during the
execution of the query. Profiling results reported by Santos Costa et al. (2000) suggest that this will
be relevant in practice, although the effect will be most noticeable if the removed literal was at the
end of the clause.

4.2.2 COMPLEXITY OF t!

We approach the efficiency gain yielded byt! from two points of view: first, looking at SLD-
trees and non-determinacy; second, at a higher abstraction level, looking at the execution times the
subgoals consume.

Let us assume for now that a literalli succeedski > 0 times. Then without the transformation
the number of nodes in the SLD tree is∏i ki . After the transformation it becomes∑i ∏l j∈qi

kj . If we
simplify this by assuming a constant branching factorb, execution of the original query takes time
O(bN) while execution of the transformed query takes timeO(bmaxNi). Thus, the execution time of
the query is reduced from “exponential in its length” to “exponential in the length of the longest
conjunction between two cuts”.

We can obtain some more insights from a second stance, describing efficiency in terms of times
rather than SLD tree sizes. We introduce

• ti : the time needed for exhausting the search space ofqi

• si : the number of timesqi succeeds

• t̄i = ti/(si +1) : the average time until success or failure for subgoalqi

• k = min{i|si = 0} (i.e. qk is the first subgoal that has no solutions)

Without cuts the time needed to confirm failure of the clause on a single example is

t1 +(s1(t2 +s2(....))) = t1 +s1t2 + ...+s1...sk−1tk

and after applying the cut-transformation this becomes

t̄1 + t̄2+ ...+ t̄k−1+ tk

If the last term in both formulae is dominant (which happens iftk is large), a speedup of at most
s1s2 · · ·sk−1 can be obtained. If an earliert j dominates, this results in a speedup of roughlys1s2 · · ·sj−1.

4.2.3 COMPLEXITY OF to

The once-transformation,to, is the recursive application oft! , and thus has a similar effect on effi-
ciency; only now the original equivalence classes may be subdivided further. The execution time
of the transformed query is most easily described by introducing the concept of a once-tree. A
once-tree is constructed from a once-transformed query as follows: the root of the tree contains the

475

SANTOS COSTA et al

Transformation Evaluation Complexity
ID O(ebd)
tθ O(ebd′) with d′ ≤ d
t! O(ebmaxdi)
to O(ebmaxd′i) with ∀i : d′i ≤ di

ts O(e′bdm) with e′ ≤ e

Table 1: Summary of efficiency of evaluation of transformed queries.

part of the query that is not inside once-constructs, and for eachonce construct it has a child which
is the once-tree of the subgoal inside theonce . The execution time of the transformed query is
then exponential in the length of the longest path from the root of the tree to a leaf, where length is
interpreted as the total number of literals on the path.

4.2.4 COMPLEXITY OF ts

The smartcall transformation consists of dropping all subgoals that are independent of the last added
literals. This makes the execution time exponentional in the length of the remaining subgoals.
Table 1 presents an overview of the results in terms of non-determinacy (represented by the average
branching factorb).

The effect of combining transformations is a possible further reduction of thed parameters.
Whent! or to are applied aftertθ, the resultingdi andd′i parameters may be less (but not greater)
than if tθ had not been called in advance. Applyingto after ts reduces thebdm factor tobmaxd′i with
d′i the maximal number of literals on a path from root to leaf in the once-tree ofts(q).

4.3 Summary

The results on computational complexity can be summarized as follows:

• As the transformation time itself does not depend on the size of the data set, for large data
sets it will become negligible compared to the execution time gained by performing the trans-
formation.

• Concerning the evaluation of clauses, the efficiency gain the transformations yield depends
on the size of the SLD tree of the original and transformed clause. This size is affected by:

– the number of examples, which determines the number of head variable substitutions
for the clauses

– the non-determinacy of the literals in the clause, which measures the branching factor
in the SLD tree

– the depth of the SLD tree, which can be considered proportional to the length of the
clause for the untransformed query; for the transformed query it is proportional to the
length of the longest path in its once-tree.

This yields four parameters that influence efficiency gain: number of examples, non-determinacy,
length of clauses, and complexity of the most complex subgoals (as measured by the once-tree). A

476

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

a b c
Size 100–500 501–2000 2001–10000
Non-determinacy]1,2]]2,3]]3,6]
Length 1-4 5–8 9–12

Table 2: Discretization of controlled parameters into three categories.

maximal gain can be expected when the first three parameters have large values and the last one is
small.

5. Empirical Evaluation

The analysis above gives us some insights into the behaviour of the transformations. In practice,
we would like to know the context in which each transformation can be expected to work best.
Although theory does not answer this question, it does provide us with the basis on which we can
design experiments to provide guidance.

Our empirical evaluation is of two types:(1) controlled experiments using artificial data (Sec-
tion 5.1) and(2) uncontrolled experiments using real-world data (Section 5.2). All experiments
were run on a Linux PC (Pentium III, 850 MHz, 256 MB). We used Aleph 3 running on Yap 4.2.0;
coverage lists were enabled throughout.

5.1 Controlled Experiments

The purpose of our controlled experiments is to investigate the influence of parameters on the effi-
ciency of the different transformations. We estimate, as a consequence, the set of transformations
best suited for each setting of the parameters.

5.1.1 MATERIALS AND METHOD

We control the following three parameters: number of examples, length of clauses and non-determinacy.
The fourth parameter, complexity of the hardest independent subgoal, is more difficult to control,
but can be measured.

We discretize the values of the controlled parameters into three categories: low, medium, high.
The thresholds are shown in Table 2. The three categories for three different parameters give rise to
27 combinations. For each combination we generate a corresponding artificial data set and random
clauses, then we run the transformations on the clauses and measure the relative performance of
each transformation, to determine which one works best for that combination.

5.1.2 THE DATASETS

The artificial datasets are all directed graphs. Each graph contains a number of nodese and each
node hasb0 outgoing edges to a randomly chosen node of the graph. Each individual node serves as
an example in the data set. By controllingb0 andewe control size and nondeterminacy, respectively.
A more precise description of how the data sets were generated is given in Appendix B.

477

SANTOS COSTA et al

.
.

. .
.

.
Figure 4: Relative efficiency of the transformations.

5.1.3 QUERY GENERATION

The clauses generated in this experiment can have two kinds of literals in the body:edge/2and
label/2 literals. The first argument of an edge literal is an input argument; the second argument
is then non-determinate as it can takeb0 different values.label/2 literals are always added with a
constant as second argument and serve as tests (i.e., they may succeed or fail).

The random queries are generated in a levelwise top-down manner, as follows:

C0 := { p(X)← }
l := 1
while l < maxclauselength

Cl := n random refinements of random clauses fromC
incrementl

Clauses are then selected at random from theCl .

5.1.4 RESULTS

Some results on transformation times are shown in Figure 4. The results not only confirm that the
different transformations have complexityN2, N3 andN4 (these are clearly distinguishable on the

478

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

figure), they also give an indication of the actual time they consume. IfT(t, l) is the time needed to
execute transformationt on a clause of lengthl , ande is the number of examples, thenT(t, l)/e is
the time we should at least gain when evaluating a query on a single example for the transformation
to be useful.

Figure 5 summarizes results on evaluation times. For each individual clause nondeterminacy
was estimated as the average branching factorb = be/l

0 with b0 the branching factor in the graph;e
the number ofedgeliterals in the clause,l the length of the clause (since onlyedgeliterals have a
nondeterminacy ofb, label literals are determinate).

The continuous lines show the actual running times of the slowest and the fastest approach.
The graph clearly shows that the longest running times are needed when nondeterminacy as well
as clause length are high. The average time for querying one example does not depend much on
the size of the data set (which means the total running time is linear in the number of examples).
It is also clear that the transformations yield the highest efficiency gain where it counts most, and
thus greatly reduce the variance of the timings: execution times for transformed clauses vary over a
factor of about 20 instead of a factor of 1000.

Below the absolute measurements, relative speedups are shown; the 1.0 line corresponds to “no
transformation”. In almost all cases, all transformations yield a speedup, sometimes a large one.
The most complex composed transformation (tθso) consistently yields the greatest speedup.

As all three parameters vary along the same axis in this graph, the effect of each single parameter
is a bit obscured. For instance, it is not apparent whether moving from a simple to a more complex
setting always increases the speedup. The settings are partially ordered according to complexity.
Figure 6 visualizes this partial ordering in a lattice. To keep the lattice simple the effect of data set
size is not included; from Figure 5 it is quite clear that data set size does not significantly influence
the speedup ratios. The numbers in the nodes of the lattice show the average speedup (averaged
over data sets of varying size) for thetθso transformation. It clearly indicates that the speedup
indeed increases monotonically with complexity.

5.2 Uncontrolled Experiments

The purpose of the uncontrolled experiments is to examine the performance of the best transforma-
tions on particular data sets.

5.2.1 MATERIALS AND METHOD

Data here are from real-world problems or benchmarks. With these problems, the procedure in Fig-
ure 7 was adopted. In practice, adopting this procedure is trivial in the sense that for all categories,
our experiments on artificial data indicatetθso as the best transformation.

5.2.2 NOTE ON DATASETS

We used three datasets for these experiments, which have the following properties:

• Bongard (De Raedt and Van Laer, 1995): 1352 examples; nondeterminacy estimate: low

• Carcinogenesis (Srinivasan et al., 1999): 330 examples; nondeterminacy estimate: high

• Mutagenesis (Srinivasan et al., 1996): 188 examples; nondeterminacy estimate: high

479

SANTOS COSTA et al

.

. . .

. . .

. . .

. . .

. . .

.

Figure 5: Efficiency improvements obtained with the different transformations. The top graph com-
pares absolute timings for the untransformed clause with those obtained by applying
the best transformation. The bottom graph shows for each transformation the relative
speedups obtained with it in the different settings.

480

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

L
en

gt
h

N
on

de
te

rm
in

ac
y

Si
ze

Speedup for theta+smart+once
a a

3.80

b a
4.28

a b
6.54

b b
20.6

c a
5.62

a c
21.8

c b
95.8

b c
177

c c
3000

Figure 6: Different settings, partially ordered according to the “is more complex than” relation
(excluding the size parameter). In the nodes, speedup factors fortθso are shown.

1. Assign each problem to one of the 27 categories (obtained previously)
2. Choose the best transformation for the category from controlled experiments
3. Employ transformation and record results

Figure 7: Experimental method for uncontrolled experiments

481

SANTOS COSTA et al

Nondeterminacy estimates are based on the typical use of predicates that occur in the data;
for instance, the molecules used in the Carcinogenesis dataset contain on average some 30 atoms;
introducing a newatomliteral with a free variable identifying the atom thus has a nondeterminacy
factor of 30. However, there are also e.g. bond literals with lower nondeterminacy; assuming both
occur equally frequently in a clause, it makes sense to estimate nondeterminacy as the geometric
mean of all these nondeterminacy factors. Based on this reasoning and on previous experience with
these datasets, we estimate nondeterminacy to be low for Bongard, and high for Carcinogenesis and
Mutagenesis.

Average clause length is the most difficult parameter to estimate, as it does not follow from
the data but depends on the complexity of the target theory. For Carcinogenesis, there is reason
to believe that there are no good clauses of small length (Srinivasan et al., 1999), so an estimate
of medium to high seems appropriate. For Mutagenesis, previous experience suggests that clause
length can be expected to be low. For Bongard underlying theories of arbitrary complexity can be
generated; here we varied the maximal clause length from low to high.

The categories are then as follows:

• Bongard: Size=medium, Nondeterminacy=low, Clause length = low-high

• Carcinogenesis: Size=low, Nondeterminacy=high, Clause length = medium-high

• Mutagenesis: Size=low, Nondeterminacy=high, Clause length = low

Our previous analysis predictstθso to work best on all three. It also suggests that the speedup factors
for query execution that can be obtained with this transformation are: for Bongard, 5 to 20; for
Carcinogenesis: 100 to 1000; and for Mutagenesis: 5. Aleph keeps coverage lists for its clauses
and the smartcall transformation can be used. However since for other ILP systems it might not be
possible to include smartcall in the transformation, it is instructive to examine the results obtained
with tθo.

5.2.3 RESULTS

Figures 8, 9 and 10 show the efficiency gains obtained on the Bongard, Carcinogenesis and Muta-
genesis data sets. We separate the times consumed by the transformation, the execution of the query
in the database, and other computations done by the learner. Note that on the artificial data sets we
measured only the speedup of the query execution itself.

We now examine each problem in turn. On the Bongard dataset with small nondeterminacy,
only little gain is achieved (Figure 8): even for relatively large clause lengths a speedup factor of
about two is achieved, and for small clause lengths the overhead of performing the transformation is
not compensated by faster query execution. It is also the case, however, that the overhead imposed
by the query transformations is small (less than 5%).

The speedup factors are, however, not in line with our expectations. We observe a factor 1 to
2 speedup but 5 to 20 was predicted. To investigate this further, we measured the SLD-tree size
for the Bongard experiments with length 6. This suggests a branching factor of 1.54 (solving for
b in n = bl wheren is the number of nodes in the SLD-tree andl the length of the query). With
controlled data, clauses of maximum length 6 and a branching factor between 1.5 and 1.6 in fact
exhibit an average speedup of only 3.8. Interestingly, on the Bongard data set the size reduction
of the SLD-tree by the employed transformation was 3.3, which is close to the 3.8 obtained with

482

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

Figure 8: Efficiency improvements obtained on the Bongard data set.

controlled data. Apparently the reduction in SLD-tree size is as expected, but it is not matched by
the execution speedup. We have, as yet, been unable to come up with a suitable explanation for this
discrepancy.

The greatest gain is achieved in the highly nondeterminate Carcinogenesis dataset (Figure 9).
When restricting the clause length to 6, Aleph’s total run time was reduced by two orders of mag-
nitude, and the query execution time itself by a factor 200. When allowing a maximal clause length
of 8, experimentally determining the speedup became impractical. Illustrative examples were still
instructive: a certain point in the search space that with transformed clauses took 6 minutes to
reach, was only reached after over three days with untransformed clauses. The whole run with
transformed clauses took 2.53 hours, and our estimate of the speedup factor is necessarily very
approximate. Nevertheless, these results seem consistent with our estimate of 102 to 103. The Mu-
tagenesis dataset (Figure 10) can be positioned in between. The query execution speedup is here
around 4, which is clearly close to what was expected (5).

6. Conclusions

As ILP systems move from the realm of research to one of technology, implementation issues and
concerns of efficiency become increasingly important. Here we have described a number of simple
clause-transformation techniques that are directed towards reducing the theorem-proving effort that
is at the heart of many ILP systems. Theoretical analysis of the transformations suggests that they
can provide significant efficiency gains for problems that require complex theories that use highly

483

SANTOS COSTA et al

Figure 9: Efficiency improvements obtained on the Carcinogenesis data set.

non-determinate background predicates. We have conducted an empirical study that confirms this
and moreover shows that the transformation overhead is sufficiently small so that even on mod-
erately sized data sets with simple queries and low non-determinacy, there is no adverse effect of
performing the transformations. It is therefore advisable to always use, in practice, the most so-
phisticated composition of transformations that is applicable. For systems that refine clauses in a
top-down manner and remember the set of examples covered by the parent clause, this is the com-
position of the theta, smartcall and once transformations; for other systems the composition of the
theta and once transformations is the best option.

The approach adopted in this paper is in the long tradition of source-to-source program trans-
formations: changes at the source-level that can improve efficiency without altering correctness
(Loveman, 1977). The suggestions here by no means exhaust the transformations of this type.
Within ILP, a related approach is described by Blockeel et al. (2000a), where a set of queries is
restructured so that they can be executed more efficiently, without changing the individual queries
however. The two approaches are obviously complementary, and it would be interesting to see how
they can be combined.

Other related work in ILP is that on efficient subsumption testing (Kietz and L¨ubbe, 1994;
Scheffer et al., 1996). First, a correct and efficient implementation of the subsumption test could
only improve our theta-transformation. Second, some of the methods described in the literature on
theta-subsumption are closely related to the methods described here. This is not so surprising given
the close relationship between subsumption testing and executing a query; in both cases a mapping
of one structure onto an other is attempted. While our current approach is to transform clauses and

484

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

Figure 10: Efficiency improvements obtained on the Mutagenesis data set.

then employ a standard execution mechanism, some of the theta-subsumption optimisations might
be useful for improving the execution strategy itself.

Finally, we remark that obtaining efficiency gains by means of transformations such as the ones
described here is only one side of the story. Efficiency gains are as much to be made by tailoring
compilers of logic programs to account for what ILP systems do. The best results regarding effi-
ciency may well be obtained by combining both views, i.e., designing Prolog engines in conjunction
with ILP algorithms.

Acknowledgments

This work has been partly supported by Fundac¸ão da Ciência e Tecnologia under the project Dol-
phin (PRAXIS/2 /2.1/TIT/1577/95), by the PROTEM5 CNPq-NSF Collaboration ProjectCLoPn,
and by the FAPERJ Project PLAG. A.S is supported by a Nuffield Trust Fellowship at Green Col-
lege, Oxford. H.B is a post-doctoral fellow of the Fund for Scientific Research of Flanders (FWO-
Vlaanderen). J.S is a research assistant of the Fund for Scientific Research of Flanders. During part
of this research, H.V and W.V.L were funded by the FWO-Vlaanderen project G.0246.99, “Query
languages for database mining”. We would like to thank reviewers of the paper for their detailed
comments.

485

SANTOS COSTA et al

Appendix A. Program analysis and set sharing for determining (in)dependent calls

Program analysis aims at deriving at compile-time information about the execution of a program.
Typically this information could also be given explicitly by the programmer, e.g. a declaration
stating that the execution of a predicate grounds it arguments. In (constraint) logic programming re-
searchers have been using abstract interpretation (Cousot and Cousot, 1992) as a general framework
for program analysis: the concrete execution of a program is mimicked by using descriptions of the
concrete substitutions, so-calledabstractions. Much research effort has been put into the develop-
ment of these abstractions, which have to besafeapproximations of their concrete counterparts, but
which also have to bepreciseenough to capture the properties of interest. Again groundness is a
very well studied property. Also note that abstract interpretation computes these abstractions at all
program points in a program, typically before and after each call such that the abstractions describe
all possible concrete substitutions before and after a call.

For this paper we would like to point out the link with theset sharingabstraction (Jacobs and
Langen, 1992; Bueno et al., 1994) which has been used to identify possibilities for independent
AND-parallelism (Codish et al., 1997) and which can also be used in this context to refine the
dependencies between the arguments of the calls. It is beyond the scope of this paper to give a
detailed explanation of program analysis topics, but we will show in an informal way how program
analysis can help in this context.

Taking into account all variables of the calls for the detection of dependency is a safe abstraction
of the execution of the called predicate: execution of the predicate can possibly create dependencies
between all the variables in the calls. This approach is compatible with the set sharing abstraction
for a call for which no additional information is available and in which all variables are initially free
independent variables—the latter is known as a goal-independent analysis. For the call p(X,Y,Z)
the set sharing abstraction is the powerset of the set of all its variables{X,Y,Z}, namely{{},{X},
{Y}, {Z}, {X,Y}, {X,Z}, {Y,Z}, {X,Y,Z}}. A subset in the abstraction describes the possibility
that the variables in the subset have in their values variables in common. The above abstraction then
describes for example the concrete substitution{X ← f (A,B),Y ← f (A,C),Z← g(B,A)}. This
concrete substitution is not described by the abstraction{{X}, {Y}, {Z}, {X,Y}, {X,Z}, {Y,Z}}
as the sharing of A by{X,Y,Z} is not allowed, nor by the abstraction{{X}, {Y}, {Z}} as now no
shared variables are allowed. The power set safely expresses that we have to assume all possible
cases, as we do not know anything about what the call actually does to its free arguments. Reasoning
with the largest set of dependent variables is safe as it describes the dependencies we are interested
in.

Program analysis allows us to refine the dependency relation between the arguments of calls. A
first case is the grounding of variables: as soon as a variable becomes ground it should no longer
be considered for dependency determination. In the set sharing abstraction the ground variables
are removed from the powerset. This is compatible with the treatment of ground variables. The
point here is that program analysis derives this grounding behaviour by computing a more precise
abstraction for grounding calls. If the call p(X,Y,Z) grounds all its variables, the abstraction is
{}. If only X is grounded, the abstraction is{{Y}, {Z}, {Y,Z}} (which still allows all possible
dependencies between Y and Z). Finally, if X and Y are both grounded, the abstraction becomes
{{Z}}.

A further refinement is taking into account the (in)dependence of variables appearing in the
same call which can be computed by means of the set sharing abstraction. This is what is needed in

486

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

the static version of the once-transformation. For a call p(X,Y,Z) that only can create a dependency
between Y and Z, the abstraction is{{X}, {Y}, {Z}, {Y, Z}}. Again, taking all variables of the call
would be an overestimation: one can make a distinction between the calls depending on{X} and the
ones depending on{Y, Z}. Alternatively, one could for determining dependent calls view p(X,Y,Z)
as two independent calls p1(X) and p2(Y,Z) (or similarly as the conjunction p(X,,), p(,Y,Z) such
that each p/3 call can be part of another set of dependent calls).

Our program analysis based approach could be organised along the following lines. First for all
predicates (describing the examples and the background knowledge) a goal-independent set shar-
ing analysis is done which can be used to approximate the dependency property of a call (also
taking into account the independence of variables). Also for builtins, set sharing can compute an
abstraction. Typically, builtins such as comparison impose that the variables are ground, so the set
abstraction will be empty. For X = Y, the abstraction is{{X,Y}}. Note this has to be done only
once.
Then we consider the calls in a query from left to right together with their dependency approxima-
tion (as derived from set sharing abstractions). We will also propagate the groundness information
from left to right which will remove ground variables from the dependency approximations.5 During
this left-to-right traversal we can determine the chains of dependent calls by computing transitive
closures on the “grounded” dependency approximations.

Let us consider the following example query wheret(T) is the extension.

p(X,Y), q(X,Z), lof(Z), r(Y,T), t(T).

1. In the most general setting, all the calls have as dependency approximation their complete set
of variables. Thus they all belong to the same (dependency) chain.

2. Suppose p(X,Y) grounds both X and Y, then we have the following dependency approxima-
tion after propagating the groundness: p(X,Y):{}, q(X,Z): {Z}, lof(Z): {Z}, r(Y,T): {T}, t(T):
{T}. Thus after the call p(X,Y) there are two chains:q(X,Z), lof(Z) andr(Y,T), t(T) .
Note that backtracking over values for Z or T is not necessary as soon as a chain has succeeded
once.

3. Suppose p(X,Y) grounds neither X nor Y but X and Y remain independent, then the set
abstraction is{{X}, {Y}} and we could replace p(X,Y) by the conjunction p(X,), p(,Y).
The dependency approximation then becomes, p(X,): {X}, p(,Y): {Y}, q(X,Z): {{X,Z}},
lof(Z): {{Z}}, r(Y,T): {{Y,T}}, t(T): {T}. We can identify two chains:p(X,),q(X,Z),
lof(Z) andp(,Y),r(Y,T), t(T) .

4. Suppose p(X,Y) grounds only one variable, let us assume X. Then we have two chains:
q(X,Z), lof(Z) andp(,Y),r(Y,T), t(T) .

Appendix B. Generation of Artificial Data Sets

Figure 11 describes the method used for generating artificial data sets and clauses for our first set of
experiments. As explained in Section 5.1.2, the data sets are directed graphs containing a number
of nodessand for each nodeb0 outgoing edges.

5. In abstract interpretation terms, a goal-dependent analysis could be performed based on the goal-independent analysis
results.

487

SANTOS COSTA et al

for each lengthl from {1−4, 5−8, 9−12}
Q = sample 30 clauses of lengthl
for each branching factorb0 from {1−3, 4−6, 7−9}

for each sizes from {100−500, 501−2000, 2001−10000}
D = generateproblem(s, b0)
for each clauseq∈ Q

for each transformationt ∈ T
q′ = transform(t, q)
T = time(q′, D)

b = be/l
0 , with e the number of edges inq

computeaveragetime(s,b′, l ,T)

Figure 11: Experimental method for controlled experiments

The algorithm generates values for three parameters: the clause lengthl , the branching factor
b0 (i.e. the number of outgoing edges) and the sizes. Each parameter can take values from three
intervals: low, medium and high. The for-loops are iterated three times, each time selecting a
random value from one of the intervals.

A set of clausesQ is generated for each lengthl . Likewise a random graph datasetD is generated
based on the values ofsandb0. The two most inner loops apply every transformation to each of the
clauses inQ and measure the execution time of the transformed clauses.

The parameterb= be/l
0 , with e the number ofedgeliterals, is an estimate for the nondeterminacy

of the clauseq. This correction onb0 is necessary because onlyedgeliterals have a nondeterminacy
of b0, label literals are determinate. A side effect of this transformation is that the parameterb has
continuous values. These continues values are discretized into three intervals as shown in Table 2.

Average execution times are computed for each of the 27 combinations ofs, b andl . To obtain
reliable averages, we repeat the entire experiment 100 times. The average times and the correspond-
ing speedups are plotted in Figure 5.

References

H. Blockeel. Top-down induction of first order logical decision trees. PhD the-
sis, Department of Computer Science, Katholieke Universiteit Leuven, 1998. URL
http://www.cs.kuleuven.ac.be/˜ml/PS/blockeel98:phd.ps.gz .

H. Blockeel, B. Demoen, L. Dehaspe, G. Janssens, J. Ramon, and H. Vandecasteele. Executing
query packs in ILP. In J. Cussens and A. Frisch, editors,Proceedings of the 10th International
Conference in Inductive Logic Programming, volume 1866 ofLecture Notes in Artificial Intelli-
gence, pages 60–77, London, UK, July 2000a. Springer.

H. Blockeel, B. Demoen, G. Janssens, H. Vandecasteele, and W. Van Laer. Two advanced trans-
formations for improving the efficiency of an ILP system. In10th International Conference
on Inductive Logic Programming, Work-in-Progress Reports, pages 43–59, London, UK, July
2000b.

488

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

I. Bratko and M. Grobelnik. Inductive learning applied to program construction and verification. In
Stephen Muggleton, editor,Proceedings of the Third International Workshop on Inductive Logic
Programming, pages 279–292. Joˇzef Stefan Institute, 1993.

F. Bueno, M. Garc´ıa de la Banda, and M. Hermenegildo. Effectiveness of global analysis in strict
independence-based automatic program parallelization. InInternational Symposium on Logic
Programming, pages 320–337. MIT Press, 1994.

M. Codish, M. Bruynooghe, M. Garc´ıa de la Banda, and M. Hermenegildo. Exploiting goal inde-
pendence in the analysis of logic programs.Journal of Logic Programming, 32(3), 1997.

P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.Journal of
Logic Programming, 13(2-3):103–179, 1992.

J. Cussens. Part-of-speech tagging using Progol. In Nada Lavraˇc and Saˇso Džeroski, editors,
Proceedings of the Seventh International Workshop on Inductive Logic Programming, Lecture
Notes in Artificial Intelligence, pages 93–108. Springer-Verlag, 1997.

L. De Raedt and W. Van Laer. Inductive constraint logic. In Klaus P. Jantke, Takeshi Shinohara,
and Thomas Zeugmann, editors,Proceedings of the Sixth International Workshop on Algorithmic
Learning Theory, volume 997 ofLecture Notes in Artificial Intelligence, pages 80–94. Springer-
Verlag, 1995.

L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns.Data Mining and Knowledge
Discovery, 3(1):7–36, 1999.

B. Dolšak and S. Muggleton. The application of Inductive Logic Programming to finite element
mesh design. In S. Muggleton, editor,Inductive Logic Programming, pages 453–472. Academic
Press, 1992.

S. Džeroski, L. Dehaspe, B. Ruck, and W. Walley. Classification of river water quality data using
machine learning. InProceedings of the 5th International Conference on the Development and
Application of Computer Techniques to Environmental Studies, 1994.

W. Emde and D. Wettschereck. Relational instance-based learning. In L. Saitta, editor,Proceed-
ings of the Thirteenth International Conference on Machine Learning, pages 122–130. Morgan
Kaufmann, 1996.

C. Feng. Inducing temporal fault dignostic rules from a qualitative model. In S. Muggleton, editor,
Inductive Logic Programming. Academic Press, London, 1992.

D. Jacobs and A. Langen. Static analysis of logic programmings for independent and-parallelism.
Journal of Logic Programming, 13:291–314, 1992.

J.U. Kietz and M. Lübbe. An efficient subsumption algorithm for inductive logic programming. In
W.W. Cohen and H Hirsh, editors,Proceedings of the 11th International Conference on Machine
Learning, pages 130–138. Morgan Kaufmann, 1994.

489

SANTOS COSTA et al

R.D. King, S. Muggleton, R.A. Lewis, and M.J.E. Sternberg. Drug design by machine learning: the
use of inductive logic programming to model the structure-activity relationships of trimethoprim
analogues binding to dihydrofolate reductase.Proceedings of the National Academy of Sciences,
89(23), 1992.

R.D. King, S. Muggleton, A. Srinivasan, and M.J.E. Sternberg. Structure-activity relationships de-
rived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity
by inductive logic programming.Proceedings of the National Academy of Sciences, 93:438–442,
1996.

Stefan Kramer. Structural regression trees. InProceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 812–819, Cambridge/Menlo Park, 1996. AAAI Press/MIT Press.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

D. B. Loveman. Program improvement by source-to-source transformation.Journal of the Associ-
ation for Computing Machinery, 24(1):121–145, 1977.

E. McCreath.Induction in First Order Logic from Noisy Training Examples and Fixed Example Set
Sizes. PhD thesis, University of New South Wales, 1999.

S. Muggleton. Inductive Logic Programming: derivations, successes and shortcomings.SIGART
Bulletin, 5(1):5–11, 1994.

S. Muggleton. Inverse entailment and Progol.New Generation Computing, Special issue on Induc-
tive Logic Programming, 13(3-4):245–286, 1995.

S. Muggleton and C. Feng. Efficient induction of logic programs. InProceedings of the First
Conference on Algorithmic Learning Theory, pages 368–381. Ohmsma, Tokyo, Japan, 1990.

S. Muggleton, R.D. King, and M.J.E. Sternberg. Protein secondary structure prediction using logic.
Protein Engineering, 7:647–657, 1992.

C. Nédellec, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in ILP. In L. De Raedt, editor,
Advances in Inductive Logic Programming, volume 32 ofFrontiers in Artificial Intelligence and
Applications, pages 82–103. IOS Press, 1996.

S.-H. Nienhuys-Cheng and R. De Wolf.Foundations of Inductive Logic Programming, volume
1228 ofLecture Notes in Computer Science and Lecture Notes in Artificial Intelligence. Springer-
Verlag, New York, NY, USA, 1997.

J.R. Quinlan. Learning logical definitions from relations.Machine Learning, 5:239–266, 1990.

V. Santos Costa, A. Srinivasan, and R. Camacho. A note on two simple transformations for im-
proving the efficiency of an ILP system. In J. Cussens and A. Frisch, editors,Proceedings of the
Tenth International Conference on Inductive Logic Programming, volume 1866 ofLecture Notes
in Artificial Intelligence, pages 225–242. Springer-Verlag, 2000.

T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient theta-subsumption based on graph algorithms. In
Inductive Logic Programming, 6th International Workshop, Proceedings, volume 1314 ofLecture
Notes in Artificial Intelligence, pages 212–228, 1996.

490

QUERY TRANSFORMATIONS FORIMPROVING THE EFFICIENCY OF ILP SYSTEMS

M. Sebag and C. Rouveirol. Tractable induction and classification in first-order logic via stochastic
matching. InProceedings of the 15th International Joint Conference on Artificial Intelligence,
pages 888–893. Morgan Kaufmann, 1997.

A. Srinivasan. A study of two sampling methods for analysing large datasets with ILP.Data Mining
and Knowledge Discovery, 3(1):95–123, 1999.

A. Srinivasan, R.D. King, and D.W. Bristol. An assessment of ILP-assisted models for toxicology
and the PTE-3 experiment. InProceedings of the Ninth International Workshop on Inductive
Logic Programming, volume 1634 ofLecture Notes in Artificial Intelligence, pages 291–302.
Springer-Verlag, 1999.

A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: A
study in first-order and feature-based induction.Artificial Intelligence, 85(1,2):277–299, 1996.

Ashwin Srinivasan.The Aleph Manual. University of Oxford, 2001.

Patrick R. J. van der Laag and Shan-Hwei Nienhuys-Cheng. Completeness and properness of refine-
ment operators in inductive logic programming.Journal of Logic Programming, 34(3):201–225,
1998.

J. Zelle and R. J. Mooney. Learning semantic grammars with constructive inductive logic program-
ming. InProceedings of the 10th National Conference on Artificial Intelligence (AAAI-93), pages
817–822, 1993.

491

