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Abstract

This paper gives distribution-free concentration inequalities for the missing mass and the error rate
of histogram rules. Negative association methods can be used to reduce these concentration prob-
lems to concentration questions about independent sums. Although the sums are independent, they
are highly heterogeneous. Such highly heterogeneous independent sums cannot be analyzed us-
ing standard concentration inequalities such as Hoeffding's inequality, the Angluin-Valiant bound,
Bernstein’s inequality, Bennett's inequality, or McDiarmid’s theorem. The concentration inequal-

ity for histogram rule error is motivated by the desire to construct a new class of bounds on the
generalization error of decision trees.

1. Introduction

The Good-Turing missing mass estimator was developed in the 1940s to estimate the probability
that the next item drawn from a fixed distribution will be an item not seen before. Since the publica-
tion of the Good-Turing missing mass estimator in 1953 (Good, 1953), this estimator has been used
extensively in language modeling applications (Chen and Goodman, 1998, Church and Gale, 1991,
Katz, 1987). Recently a large deviation accuracy guarantee was proved for the missing mass esti-
mator (McAllester and Schapire, 2000, Kutin, 2002). The main technical result is that the missing
mass itself concentrates—McAllester and Schapire (2000) prove that the probability that missing
mass deviates from its expectation by more thénat moste~™"/3 independent of the underlying
distribution. Here we give a simpler proof of the stronger result that the deviation probability is
bounded by ™.

A histogram rule is defined by two things—a given clustering of objects into classes and a
given training sample. In a classification setting the histogram rule defined by a given clustering
and sample assigns to each cluster the label that occurred most frequently for that cluster in the
sample. In a decision-theoretic setting, such as that studied by Ortiz and Kaelbling (2000), the rule
associates each cluster with the action choice of highest performance on the training data for that
cluster. We show that the performance of a histogram rule (for a fixed clustering) concentrates near
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its expectation—the probability that the performance deviates from its expectation by moe than
is bounded b}e*msz/9 independent of the clustering or the underlying data distribution.

The concentration inequality for histogram rule error can be motivated by the desire to construct
a new class of bounds on the generalization error of decision trees. A decision tree can be viewed
as defining both a data clustering and a label for each cluster. It is possible to give highly compact
specifications of tree structure (data clusterings). The concentration inequality for histogram rule
error can be used to give a generalization bound on decision trees in terms of the number of bits
needed to specify the tree structure independent of the number of leaves. For example, a compactly
specified tree structure might have an infinite number of leaves. This potential application of the
concentration inequality for histogram rule error is discussed in detail in the future work section
(Section 10).

In proving the concentration inequalities for the missing mass and histogram rule error this paper
makes use of a lemma relating “Chernoff Entropy” to the variance of the Gibbs distribution for an
arbitrary real-valued random variable (an arbitrary configuration function). This general Gibbs-
variance lemma is implicit in Section 6 of Chernoff’s classic paper (Chernoff, 1952) but its utility
seems to have gone unnoticed. Although all of the results in this paper can be proved without the
Gibbs-variance lemma, this lemma is convenient in many cases. Section 3 shows how Hoeffding’s
inequality, the Angluin-Valiant bounds, a form of Bernstein’s inequality, and a form of Bennett’s
inequality can all be viewed as direct corollaries of the general Gibbs-variance lemma.

Negative association results can be used to reduce the concentration problems for the miss-
ing mass and histogram rule error to concentration questions about independent sums. Section 6
shows that Hoeffding’s inequality, the Angluin-Valiant bound, Bernstein’s inequality and Bennett’'s
inequality are all inadequate for the extremely heterogeneous independent sum problem underlying
the missing mass. Section 7 then derives a concentration inequality for the missing mass directly
from the Gibbs-variance lemma. Section 8 derives an incomparable concentration inequality for
the missing mass from a lemma of Kearns and Saul (1998). Section 9 then derives a concentration
inequality for histogram rule error from the Kearns-Saul lemma and convenient but inessential use
of the Gibbs-variance lemma.

2. The Exponential Moment Method

The main technical challenge in proving the results of this paper is the analysis of extremely het-
erogeneous independent sums. It is possible to show that standard concentration inequalities for
independent sums (Hoeffding’s inequality, the Angluin-Valiant bound, Bernstein’s inequality, and
Bennett’s inequality) are insufficient for extreme heterogeneity. Hence we must go back to the
underlying exponential moment method used to prove the standard inequalities.

Let X be any real-valued random variable with finite mean. DB(X,x) be P(X > x) if x >
E[X] andP(X <Xx) if x< E[X]. The following lemma is the central topic of Chernoff’s classic paper
(Chernoff, 1952).

Lemma 1 (Chernoff) For any real-valued variable X with finite me&iX] we have the following
for any x where the “entropy” &, x) is defined as below.

DP(X,x) < e XX 1)
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S(X7X) = Ssup XB_ Inz(x7 B) (2)
B
Z(X,B) = EHﬂ 3)
Lemma 1 follows, essentially, from the observation thaf¥or O we have the following.
P(X>x) <E [eﬁ(X—x)] _ e BE [eﬁx} _ o (B-InZ(X.B) @

Lemma 1 is called the exponential moment method because of the first inequality in (4).

In this paper we use some further general observations about the exponential moment method.
For any real-valued random variat¥ethere exists a unique largest open intef@hin, Bmax) (POS-
sibly with infinite endpoints) such that f@ € (Bmin, Bmax) We have thaZ(X,p) is finite. For a
discrete distribution, and fd € (Bmin, Bmax), the Gibbs distributior’; can be defined as follows.

%Mzmzz%ﬁfmzm&

For B € (Bmin, Bmax) We define the expectation &fX) at inverse temperatuifgas follows.

1 X
@HMH_ZZ?Squﬁ}
The distributionPg and the expectation operatog [§ are both easily generalized to continuous
distributions.

For B € (Bmin, Bmax) let 02(X, B) be B [(X — Eg[X])?]. The quantitya?®(X, B) is the Gibbs-
variance at inverse temperatyzeFor 3 € (Bmin, Bmax) We letKL(Pg||P) denote the KL-divergence
from Pg to P which can be written as follows where the first line is the general definition of KL-
divergence.

X

o

= EB [BX] — E|3 [In Z]

= Eg[X|B-Inz )

Letxmin be the greatest lower bound of the set of all values of the foyXEor B € (Bmin, Bmax)
and letxmax be the least upper bound of this set. If the open intefgh, Xmax) iS Not empty then
Eg [X] is a monotonically increasing function Bfe (Bmin, Bmax). FOrx € (Xmin, Xmax) definep(x)
to be the unique valug satisfying E [X] = x. Finally we define a definite double integral notation.

Definition 2 For any continuous function f we define the definite double intefjfdl(s) ds to be

F(x) where F is the unique function satisfyinddj = 0, F'(a) = 0, and F’(x) = f(x) where F(x)
and F’(x) are the first and second derivatives of F respectively.
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To calculateffab f(2)d%z we can useffab f(2)d%z= F(b) — F(a) — F'(a)(b— a) whereF (x) is
the indefinite integral| f(z)d?z, i.e., any functiorF with F”(x) = f(x). Fore small we have the

following.
a+te
// f()d2z~ L 1(a)e?
a 2
For any doubly differentiable functiohwe can writef as follows.
X
F(x) = f(a)+ f’(a)(x—a)+// £ (2)d%2 (6)
a

We now have the following general theorem.

Lemma 3 (Gibbs-variance lemma) For any real-valued variable X, any& (Xmin, Xmax), andp €
(Bmin, Bmax) We have the following.

SX, %0 = XB(X)— InZ(X, Bx) @
— KL(PyoIP) ®)
X d?z
= [foorx, 50 ®)
nZ(B) = EolxIB+ [[ X, ey (10)

Before proving this lemma we first discuss its significance. It is important to note that the
theorem makes no assumptions ab¥utthere are no boundedness or independence assumptions
of any form. Furthermore, Equation (9) implies that §small we have the following.

g2

X,Eg|X N
In any bound of the fornDP(X, Eo[X]+¢) < e () proved by the exponential moment method we
must have the following for smadl

g2
f(e) <YX, E[X P —

So f(g) must be quadratic (or higher order) énand the constant of the quadratic term can not
exceed 1202,

An interesting aspect of Lemma 3 is the connection it establishes between the general exponen-
tial moment method and general concepts of statistical mechanics. Up to sign conventions (7) is the
standard statistical mechanics relation between the emxethg entropys, the inverse temperature
B, and the Gibbs free enerdinZ)/B. Here we have tha andf3 have the opposite sign from stan-
dard thermodynamic conventions. The sign convention adopted here ®pksdlive and causes
the sign off3 to match to the sign of the deviatiorg EX] — Eo [X].
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3. Some Standard Concentration Inequalities

Although Lemma 3 makes no assumptionsXqiit can be used in deriving more specialized bounds
for, say, independent sums of bounded variables. ConXidefy; X; where theX; are independent
and each; is bounded to an interval of width. In this case we have?(X;, B) < b?/4. It follows
thato?(X, B) < (1/4) 5;b?. Formula (9) then immediately implies the following.

SX, EoX]+8) > 2 (11)

¥ibf
Combining this with (1) yields the following.
DP(X, Eo[X]+¢) < & 27/(2i) (12)

Formula (12) is the familiar Hoeffding inequality (Hoeffding, 1963). We will generally write bounds
in the form of (11) rather than the more familiar (12) because of the interaction of these bounds with
other lemmas, e.g., Lemma 4 at the end of this section or the lemmas in Section 5.
Next considerX = 3; X where theX; are independent Bernoulli variables. FbK 0 we have
the following.

o’(X,B) = YRX=1)(1-RX=1) < YRMX=1)
< YPXi=1) = YE[X] = Eo[X]

Formula (9) then yields the following.

g2

2B [X]

This is the lower deviation Angluin-Valiant bound (Angluin and Valiant, 1979, Hagerup ar R~
1989). A form of the upper-deviation Angluin-Valiant can be derived using the following observa-
tion.

S(X, Eg[X]—¢) >

(13)

o’ (X,B) = S R(X=1)(1-P(Xi=1) < SR(X=1)
< BglX]
o’(X, B(x)) < X (14)
Combining (9) with (14) yields the following.
EolX]+€ g2
sx. &ix+e) > [0 (15
€
= Ep[X]H <—E0[X]> (16)
where

H(t) — //11+t)—l(d2x:(1+t)ln(1+t)—t
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Formula (16) is Bennett's inequality for the Poisson limit where epcls very small so that
a?(X, 0) is essentially equal todX]. Note that in (16) we have thatcan be either positive or
negative. It is interesting to note that in the Poisson limit formula (15) holds with equality and hence
Bennett's inequality corresponds to the exact Chernoff entropy for the number of poison arrivals.
This observation implies that (16) is the tightest possible concentration inequality provable by the
exponential moment method fBXP(X, Eq[X] +¢€) for the caseX = ¥ X; with X; independent and
Bernoulli provided that we require the bound be a functiors ehd E[X]. Fort > 0 it is possible

to show thaH (t) > t?/(2+ (2/3)t) and (16) then yields the following.

2

€

SX, Eo[X]+€) > -y 17)
2(Eo [X] + 3¢)

Equation (17) is Bernstein’s inequality in the case of the Poisson limit. For the case & [X]

formula (17) implies the following.

X, Eo[X]+¢) > (18)

Formula (18) is the upper deviation Angluin-Valiant bound although the bound is usually stated
with the constant 3 replacing/8.

The following lemma implies that all of the inequalities discussed above generalize to indepen-
dent sums of variables bounded|®1].

Lemma4 LetY = 5;Y; with ¥ independent and;¥: [0,1]. Let X= $;X; with X independent and
Bernoulli and withE[X;] = E[Y;]. For any such X and Y we havéYSy) > S(X, y).

This lemma follows from the observation that for any convex funcfiam the interval0, 1] we
have thatf (x) is less thar{1— x) f(0) 4+ xf(1) and so we have the following.

E [eﬁ“] <E [(1—\4) +YieB| = (1-EX]) +EX] =E [eﬁﬂ
So we get that IA(Y, B) <InZ(X, B) and the lemma then follows from (2).

4. Proof of Lemma 3

We now turn to the proof of Lemma 3. Formula (7) is proved by showingfibatis the optimalp
in (2). More specifically, we first note the following simple relations ot (Bmin, Bmax)-

dinz(X,p) _ E[X&X] _
® zxp P .
d?inz(x,B) _ E[X2*]|Z(X, B)— E[xe*]?
d? a Z2(X, B)
= Ep[X? —Ep[X]?
= GZ(X, B) (20)

To optimize (2) we now differentiatgB — InZ(X, B) with respect td3. By (19) this derivative is
x—Eg[x. Setting the derivative to zero gives= Eg[X] or, by definition, = B(x). To see that
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this is a minimum note that (20) implies that the second derivatigé(i8) and hence non-negative.
Equation (8) follows from (7) and (5). Equation (10) follows from (19), (20), and (6).
To derive (9) we consider derivatives of the entr&f(x)) with respect to the deviation

SBX) = xB)—InZ(X, B(x))

dS(B(x)) dB(x) dInZ(X, B) dB(x)
ax PR TT T ax
= B(X)JFX%(XX)—Es(x) [X]%(XX)
= B(x) (21)
PSBX) B
dx2 dx
dE; [X]
=Y < dp >
1
= 32X, p) (22)

Finally, (9) follows from (21), (22) and (6).

5. Negative Association

The analysis of the missing mass and histogram rule error involve sums of variables that are not
independent. However, these variables are negatively associated—an increase in one variable is
associated with decreases in the other variables. Formally, a set of real-valued random Vérjables

..., Xn is negatively associated if for any two disjoint subdedasdJ of the integerg1, ..., n}, and

any two non-decreasing, or any two non-increasing, functfofiem R'l to Randg from RY/ to R

we have the following.

E[f(X%, TeDa(Xj, j € )] <E[f(X, i e DIE[g(X;, j €J)]

Dubhashi and Ranjan (1998) give a survey of methods for establishing and using negative associa-
tion. This section states some basic facts about negative association.

Lemma5 Let X, ..., X, be any set of negatively associated variables. Liet X, X/, be indepen-
dent shadow variables, i.e., independent variables such that distributed identically to X Let
X =7y;X and X = 5; X/. For any set of negatively associated variables we hg¥e>»§ > S(X’, x).

Proof
Z(X,B)=E [eﬁx} - E [nief%]
< MiE [e[%] —E [eﬁx’] —2(X'.B)
The lemma now follows from the definition & i.e., Equation (2). [ |
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Lemma 6 Let S be any sample of m items (ball throws) drawn 11D from a fixed distribution on the
integers (binsX1, ..., V}. Letc(i) be the number of times integer i occurs in the sample. The
variablesc(1), ..., c(V) are negatively associated.

Lemma 7 For any negatively associated variableg, X.., X,, and any non-decreasing functions
f1, ..., fn, we have that the quantitieg(X;), ..., fa(X,) are negatively associated. This also holds
if the functions jfare non-increasing.

Lemma 8 Let X, ..., X, be a negatively associated set of variables. LetY Y, be 0-1 (Bernoulli)
variables such that;Ys a stochastic function of X.e., RY; = 1| X1,..., Xn, Y1,...,Yi—1,Yig1,..., Yn) =

P(Yi=1]X). If P(Yi =1]| X) is a non-decreasing function of bhen Y, ..., Yn are negatively as-
sociated. This also holds if(® = 1| X;) is non-increasing.

Proof
E[f(Y.ieha(Y, jed)] = E[E[f(M.iehg. j€d)|Xe....%]
= E[E[f(Y,iel) X, iel]E[9(Y], j€I|Xj, jeI)]]
< E[E[f(M,iel) X, icl]E[E[9(Y}, j€I|X, j€I)]
= E[f(Y, ieD]E[g(Y;, j€J)]

6. The Missing Mass: Inadequacy of Standard Inequalities

Suppose that we draw words (or any objects) independently from a fixed distribution over a count-
able (possibly infinite) set of words. We let the probability of drawing word/ be denoted aB,,.

For a sample omdraws, the missing mass, denotéds the total probability mass of the items not
occurring in the sample, i.&X = 3 ¢sPy. Let Xy, be a Bernoulli variable which is 1 if word does
notoccur in the sample and 0 otherwise. The missing mass can now be writea: g5, PyXw. In

the discussion below we 1€, be P(Xy, = 1) ~ e M,

The variablesX,, are monotonic functions of the word counts so by Lemmas 6 and 7 we have
that theX,, are negatively associated. By Lemma 5 we can then assume that the vaXiglaies
independent. McAllester and Schapire (2000) prove$hst €) > me?/3 independent of the size of
V or the distribution oivV. Here we review why this result does not follow from standard inequalities
for independent sums.

Hoeffding’s inequality (Hoeffding, 1963) yields the following.

2¢2
S(X,E[X] +¢) > Su P2

w ' w

In the missing mass application we have tgé(;l P2 can beQ(1) and so Hoeffding’s inequality
yields a bound that i©(1) rather than the required(m).

We now consider the Angluin-Valiant bound (13). Rtax = maxy Ry. DefineY = X /Prax.
Lemma 4 implies that the Angluin-Valiant bound (13) generalizes to sums of independent variables
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bounded td0, 1]. Applying this generalization t¥ yields the following fore > 0.

SX. EoX]-8) = SY.EolY]- 5 )
82
= L&)
82
"~ 2PnabolX] *)

To demonstrate the inadequacy of (23) tékéto bem+ 1, takePR, to be /2 whereu is a distin-
guished high probability word and take, = 1/(2m) for w # u. We then have th&n.x= 1/2 and
Eo[X] = 51 PuQw ~ 1/(4e). In this case (23) i©(1) rather tharQ(m).

An important observation for the missing mass is #&tX) is O(1/m). In particular we have
the following where we use negative association ent< l/(ex) for x > 0.

o?(X) < z %1(%<Z
ZP\,zv ~MRe < S Pu/(em

< 1/(em

IA

Sincea?(X) is O(1/m) we might naturally hope to use Bernstein’s inequality. The general form
of Bernstein’s inequality states that fér= 3,,Y,, with Y,, independent, with zero mean, and with
Yw < ¢, we have the following.

£2

SX>E[X]+¢g) > 27 2
For the lower deviation of the missing mass we can tgke- R, (Qw — Xy) in which casec can
be taken to be mg®,Qw < 1/(em). So Bernstein’s inequality handles the downward deviation
of the missing mass with a slightly weaker constant than that derived from (9) in Section 7. For
the upward deviation of the missing mass, however, we Yake R,(Xy — Qw) in which case we
need to take > maxyPy(1— Qy). In this case the same example that defeats the Srivistav-Stranger
bound defeats Bernstein’s inequality—although< 1/(em) we have thate can be as large as
c=1/4. So we get a bound that@®(1) rather tharQd(m).

The general form of Bennett's inequality states that under the same conditions as Bernstein’'s
inequality we have the following.

02 /ce
SX > E[X]+¢) > ZH ()
HereH(t) = flet 1/x d?x = (1+1)In(1+t) —t. The same example again defeats this bound for

upward deviations of the missing mass. Again, wiifds O(1/m), we have that ande can both
beQ(1). This implies that = ce/a? can beQ(m) in which case we have the following.

o2  /ce 1
=H (02) <0 <E(1+ m)In(1+ m)>
So we get a bound that @(Inm) rather tharQ(m).
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7. A First Missing Mass Result

Here we derive both upper and lower concentration inequalities for the missing mass from (9) and
(10) respectively. In Section 8 the constants in the upper bound will be improved. For the downward
deviation we can use the following corollary of (9).

Lemma 9 Let X= ¥;biX; where the Xare independent Bernoulli variables and> 0. Let Q be
E[Xi]. For e > 0 we have the following.

g2

Formula (24) follows from (9) and the following which holds fBr< 0.
(X, B) = FQBEL-QBE
< S Q@)K
< IZQibiz

S(X,E[X] —¢) (24)

In the missing mass problem we ha®g < e ™R and the argument in Section 6 showing that
02(X) < 1/(em) also shows thay,, P2Qy < 1/(em). So we have the following downward deviation
result which has a better constant than we get from Bernstein’s inequality.

Theorem 10 For the missing mass X as defined in Section 6, and o0, we have the following.

2
SX, EX]-g) > -
We now derive an upward-deviation missing mass bound. This derivation is a variant of the
derivation by McAllester and Schapire (2000) but benefits from the general statement of (10). We
first note the following corollary of (10).

Lemma 11 Let X be any real-valued random variable andgt.x > 0 and omax > 0 be constants
such that for0 < B < Bmax We haves?(X, B) < 02, For 0 < &€ < Bmax02,a We have the following.
2

X, Eg[X >
SIX, EolX]+€) 2 55—

To see this note that by (10), for<Op < Bmax We have the following.
1
InZ(X, B) < Eo[X]B+ éoﬁqaxsz
Inserting this into (2) and settigequal tog/02,,, < Bmax Proves the lemma.
For the missing mass problem we haviXE> 0 and Equation (10) implies that f@> 0 we

haveZ > 1. This implies thaPg(Xy = 1) < Quwe™B. This implies the following.

0®(X, B) < J PiPa(Xw=1) < 5 Pie (™ B
W w
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We now consider a constafihax in the interval[0,m]. For anyp in [0,Bmay We now have the
following where we use > < 1/(ex) for x > 0.

X, B < T 1

W e(m_ Bmax) B e(m_ Bmax)

So for a givenBmax < mwe can takeo?,,, = 1/[e(m— Bmax)]. We can now apply Lemma 11 for
€ < Bmax/[€(M— Bmax)]- Solving forPBmax as a function ot gives the following.

esm
1+ee

Bmax =
Note that this satisfieBmnax < m. Solving foro?nax as a function ot we get the following.

2 1+ec
max —— em

Applying Lemma 11 now yields the following.

Theorem 12 For the missing mass X as defined in Section 6 we have the followisg>féx

ene?
> R —
SX EXI+e) = 5
For 0 < € < 1 this gives the following.
1 2
S(X, E[X]+¢) > 3

8. A Second Solution

Now we give a concentration inequality for the upward-deviation of the missing mass that is not
based on (9) or (10). Rather it is based on the following lemma of Kearns and Saul (1998).

Lemma 13 (Kearns and Saul)For a Bernoulli variable Y we have the following where Q {¥P=1).

qupZ(Y. B) ~EolbY]B _ (1-20)1?

3 2 T anke (@5)
_ 2
nZ(bY, B) < Eolby|p+ T2 (26)
Q
B2,
< EolbYIB+ ;0 1B (27)
Q

We now make use of the following lemma whose proof is similar to the proof of Lemma 11.
This lemma will also be important in Section 9.

Lemma 14 If ¢ is such that for alB we haven Z(X, B) < E[X]B+cf? then (2) implies X, E[X]+
g) > €2/(4c).
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Formula (27) and observation 14 now immediately yield the following.

Lemma 15 Let X = z}’:l b X; where the Xare independent Bernoulli variables and>® 0. Let Q
beE[X;]. For € > 0 we have the following.

g2

SXEX]+e) =2 ——
Zi:l@

Lemma 15 now immediately solves the upward-deviation of the missing mass problem. Let
X = Y wPwXw be the missing mass variable wi@y = P(Xy = 1) < e MR, We now have the
following.

Then, Lemma 15 yields the following.
Theorem 16 For the missing mass X as defined in Section 6 we have the following.
S(X, EX]+¢&) > me?

We have that theorem 16 is superior to theorem 12far(1/2—1/e) ~ .07.

9. Histogram Rule Error

Now we consider the problem of learning a histogram rule from an IID sample of payse<
X x Y drawn from a fixed distributiod on such pairs. The problem is to find a rilenapping
X to the two-element s€i0, 1} so as to minimize the expectation of the lb@%(x),y) wherel is a
given loss function fror{0,1} x Y to the interval[0,1]. In the classification setting one typically
takesY to be{0,1}. In the decision-theoretic settingis the hidden state and can be arbitrarily
complex and (h(x),y) is the cost of taking actioh(x) in the presence of hidden state In the
general case (covering both settings) we assumetgrjyc {0,1} and/(h(x),y) € [0,1].

We are interested in histogram rules with respect to a fixed clustering. We assume a given cluster
functionC mappingX to the integers from 1 tk. We consider a sampl® of m pairs drawn 11D
from a fixed distribution orX x Y . For any cluster indej, we defineS; to be the subset of the
sample consisting of pair,y) such thaC(x) = j. We define ¢j) to be|S;|. For any cluster index
j andw € {0,1} we defind ;(w) andi;(w) as follows.

lj(w) = -

o lwy),  1i(W) = Exy~p| =i [l (WY)]
(1) s

If c(j) =0 then we definé,- (w) to be 1. We now define the rufeandh* from class index to labels
as follows.
ﬁ(j) = argminl]- (W), h*(j) = argminlj(w)

we{0,1} we{0,1}
Ties are broken stochastically with each outcome equally likely so that thenrislea random
variable only partially determined by the sam@leWe are interested in the generalization loss of

the empirical ruleh. A A
I(h) = Exy~p [ (NC(x)),y)]
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Theorem 17 For I(ﬁ) defined as above we have the following for positive

s(1(h),E[I(N)] —¢) > ”‘872 (28)
s(1(h),E[I(A)] +¢€) > mst (29)

To prove this we need some additional terminology. For each class jatefineP; to be the
probability over selecting a paix,y) thatC(x) = j. DefineL; to bel;(1—h*(j)) —1;(h*(j)). In
other words] ; is the additional loss on clas'}swhenﬁ assigns the wrong label to this class. Define
the random variable; to be 1 if h(j) # h*(j) and O otherwise. The variabl¢; represents the
statement that the empirical rule is “wrong” (non-optimal) on clas3Ne can now express the
generalization loss df as follows.

I(R) = 1(h") + 3 PLiX

The variableX; is a monotone stochastic function of the coufit)e-the probability of error de-

clines monotonically in the count of the class. By Lemma 8 we then have that the vaXables
negatively associated so we can treat them as independent. To prove theorem 17 we start with an
analysis ofP(X; = 1).

Lemma 18
PX;=1) < 3e &MY (30)

PX;=1) < 3e3(-LmAL} (31)

Proof To prove this lemma we consider a threshpld mP and show the following.

PO =1) < Pc(j)<y)+PX=1]c(j)>y) (32)
P(e(j)<y) < e (mA-y)"/@mR) (33)
P =1 c()>y) < 26¥3) (34)

Formula (33) follows form the Angluin-Valiant bound. To prove (34) we note thagjif= 1 then
eitherl; (h*(j)) > 1;(h*(j)) +L;j/2 or[j(1—h*(j)) <1j(1—h*(j)) —Lj/2. By a combination of
Hoeffding’s inequality and the union bound we have that the probability that one of these two
conditions holds is bounded by the left hand side of (34). S(—:‘ptitu‘;jngJ yields the following
which implies (30).

P(X; = 1) < e M 4 2g~ sMAL]
Settingy to (1 — Lj)mP gives the following which implies (31).

P(X; =1) < e ™AL 4 2e 3(1-L)mBL]
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We now prove (28) using (30) and (10). Sin¥eis bounded to the intervd0d, 1] we have the

following.
1
o*(RLX, B) < 7

Forx < E[X] we haveB(x) < 0 and forf < 0 we have the following.

p2L? (35)

o*(RLiX, B) = PLIRs(Xi=1)(1-Pp(X =1))
< PALER(X=1)
< PALPR(X =1)
< PAL?3e ismAL (36)

Now let o = (16/3)In12. Fori satisfyingmRL? < o we use (35) and for satisfyingmRL? >
a we use (36). This gives the following where in deriving (37) we use the factxédt is a
monotonically decreasing function »for x > 1/k.

RL2 P
m - ) +y & (mP.Li23e‘1§6mHLi2)) p?
mRBL{

INZ(X, B) < EolX)B+3

H
3
oM
IA
°3|®
VRS

LE>a

= R [x1[3+% (mHL ga% () T >a% (3ae—1§6a)) i (37)
- mpee 3 (30 (5))#
- b [x“”% (%n) p* (38)

Formula (28) now follows from (38) and a variant of observation 14. The proof of (29) is similar.
Lety= 16(2+In3)/3. Fori satisfyingmRL? < y we use (35). For satisfyingmRL? > ywe use
(27) which yields the following.

InZ(PLiX;, B) < Eo[X]B PL? 2 39
1L, >~ Lo + 4(%mF.’Li2—In3) B ( )

Combining (35) and (39) yields the following.

InZ(X,B) < Eo[X|B+

P <mP|Li2

1
2 mRéévE

2(ZmRL?—1In3)

2 .
- Eo[X]B+% m%_#]<mjl-.)+mpé ;(M p2

22y >y 16 mRL?
1 Py i 1
= FolIP+ 2 ml?§i<yEI (Z) —'_ml?éwEI (@)) BZ
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- wi(p2)
= Eo [X]B-f—% (%1 B? (40)

Formula (29) now follows from (40) and Lemma 14.

10. Conclusions and Future Work

We have given concentration inequalities for the missing mass and for histogram rule error. In
proving these results we have found it convenient to use a Gibbs-variance lemma relating Chernoff
entropy to the variance of the Gibbs distribution for an arbitrary real valued random variable. There
is a clear mismatch between the generality of the Gibbs-variance lemma, which applies to an arbi-
trary real valued random variable (an arbitrary configuration function) and the uses of this lemma
here which are restricted to the analysis of independent sums. But it is notimmediately obvious how
to use the Gibbs-variance lemma in more complex settings such as those addressed by Talagrand’s
inequality or information-theoretic methods (McDiarmid, 1998, gives an overview of these meth-
ods). It seems likely that many quantities, possibly the cross-entropyrefjeeim language model,
combine the extreme heterogeneity of the missing mass problem with coupling (non-independence)
that defeats analysis by negative association. To prove concentration for such quantities it seems
likely that sophisticated methods for handling difficult non-independence will need to be extended
to handle extreme heterogeneity.

The concentration inequality for histogram rule error seems relevant in bounding the general-
ization error of decision trees. Fix a scheme for coding decision trees with finite bit strings. A
use of Hoeffding’s inequality, the Kraft inequality for codings, and the union bound can be used to
show that, with probability at least-15 over the choice of a training sample of sibewe have the
following where/(T) is the generalization of error of the trée /(T) is the error rate of on the
training data, andiT | is the number of bits it takes to code(McAllester, 1998).

(In2)|T|+1In(1/8)
2m

VT 4(T) < {(T) +\/ (41)
Related results are given by Lugosi and Nobel (1996), Kearns and Mansour (1998), Langford and
Blum (1999), and McAllester and Mansour (2000). A decision tree can be viewed as composed
of two parts—a tree structure and the leaf labels. The tree structure defines a clustering—one
cluster for each leaf—and the leaf labels specify a label for each cluster. If we allow a compact
representation of tree structure then the number of bits needed to specify the structure can be small
compared to the number of bits needed to specify the leaf labels. For example, suppose that we
want to classify items witlal binary-valued features. We can specify a tree structure by specifying a
sequence ok features to test. In this case the number of bits needed to specify the tree structure is
O(kInd) but the number of bits needed for the leaf labels equals the number of leaves wHich is 2
More flexible methods of describing tree structure compactly are of course possible. We would like
a version of (41) that is penalized by the bit length of the compactly described tree structure rather
than the structure complexity plus the number of leaves.
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Now consider a tree structufe and letT(S) be the histogram rule defined by the clustering
defined byT and the sampl&. The concentration inequality for histogram rules implies that for a
fixed T we have that the error ratéT (S)) is near its expectation with high confidence. Suppose
that we could find an error estimaté(r'l’ ,S) satisfying the following two properties.

E[((T(9)] (42)
Q(me?) (43)

E[{(T, 9] >
SUT,S), I(T,9)+¢) >

For any such estimattﬁ(T, S) we have the following with probability at least-15 over the choice
of the sample wher& ranges over tree structures rather than full trees.

YT (T(S) < (T, 9+0 < [TI+n(1/5) 'r:(l/ 5)> (44)

Formula (44) significantly improves on (41) in the case where the tree structures can be compactly
described and the estimaté(T, S) has an expectation near that/T (S)). Formula (44) provides
a foundation for data-dependent selection of tree structures—for a given sample one searches for a
tree structure minimizing the bound on generalization error.

The difficulty in using (44) is finding an appropriate estimanT, S). The empirical error
U(T(9) = Exy)~sl(T(S)(x),y)] has the problem that the labels can overfit—consider the case
where each cluster typically has only one data point. The empirical errdf®ffails to satisfy
(42). The leave-one-estimator 6fT(S)) satisfies (42) but fails to satisfy (43). An interesting
candidate is the Laplace error estimator defined as follows, for some coastant

(T = Zlﬁlmin(éi;l—éi)

R = [S|/n
QG = ({(xy)eS:y=1}|+a)/(n+2a)

This error estimator satisfies the conditions of McDiarmid’s theorem and hence satisfies (43). For
sufficiently large values of the constamit may also satisfy (42). Another approach to deriving a
bound like (44) is to consider least squares regression rather than classification. For least squares
regression the leave-one-out error estimaté(®f(S)) satisfies both (42) and (43). However, we

have not yet proved a concentration inequality £6F (S)) for least-squares regression. We leave

the problem of derivation a concrete version of (44) for future work.
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