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Abstract

This paper gives distribution-free concentration inequalities for the missing mass and the error rate
of histogram rules. Negative association methods can be used to reduce these concentration prob-
lems to concentration questions about independent sums. Although the sums are independent, they
are highly heterogeneous. Such highly heterogeneous independent sums cannot be analyzed us-
ing standard concentration inequalities such as Hoeffding’s inequality, the Angluin-Valiant bound,
Bernstein’s inequality, Bennett’s inequality, or McDiarmid’s theorem. The concentration inequal-
ity for histogram rule error is motivated by the desire to construct a new class of bounds on the
generalization error of decision trees.

1. Introduction

The Good-Turing missing mass estimator was developed in the 1940s to estimate the probability
that the next item drawn from a fixed distribution will be an item not seen before. Since the publica-
tion of the Good-Turing missing mass estimator in 1953 (Good, 1953), this estimator has been used
extensively in language modeling applications (Chen and Goodman, 1998, Church and Gale, 1991,
Katz, 1987). Recently a large deviation accuracy guarantee was proved for the missing mass esti-
mator (McAllester and Schapire, 2000, Kutin, 2002). The main technical result is that the missing
mass itself concentrates—McAllester and Schapire (2000) prove that the probability that missing
mass deviates from its expectation by more thanε is at moste−mε2/3 independent of the underlying
distribution. Here we give a simpler proof of the stronger result that the deviation probability is
bounded bye−mε2

.

A histogram rule is defined by two things—a given clustering of objects into classes and a
given training sample. In a classification setting the histogram rule defined by a given clustering
and sample assigns to each cluster the label that occurred most frequently for that cluster in the
sample. In a decision-theoretic setting, such as that studied by Ortiz and Kaelbling (2000), the rule
associates each cluster with the action choice of highest performance on the training data for that
cluster. We show that the performance of a histogram rule (for a fixed clustering) concentrates near
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its expectation—the probability that the performance deviates from its expectation by more thanε
is bounded bye−mε2/9 independent of the clustering or the underlying data distribution.

The concentration inequality for histogram rule error can be motivated by the desire to construct
a new class of bounds on the generalization error of decision trees. A decision tree can be viewed
as defining both a data clustering and a label for each cluster. It is possible to give highly compact
specifications of tree structure (data clusterings). The concentration inequality for histogram rule
error can be used to give a generalization bound on decision trees in terms of the number of bits
needed to specify the tree structure independent of the number of leaves. For example, a compactly
specified tree structure might have an infinite number of leaves. This potential application of the
concentration inequality for histogram rule error is discussed in detail in the future work section
(Section 10).

In proving the concentration inequalities for the missing mass and histogram rule error this paper
makes use of a lemma relating “Chernoff Entropy” to the variance of the Gibbs distribution for an
arbitrary real-valued random variable (an arbitrary configuration function). This general Gibbs-
variance lemma is implicit in Section 6 of Chernoff’s classic paper (Chernoff, 1952) but its utility
seems to have gone unnoticed. Although all of the results in this paper can be proved without the
Gibbs-variance lemma, this lemma is convenient in many cases. Section 3 shows how Hoeffding’s
inequality, the Angluin-Valiant bounds, a form of Bernstein’s inequality, and a form of Bennett’s
inequality can all be viewed as direct corollaries of the general Gibbs-variance lemma.

Negative association results can be used to reduce the concentration problems for the miss-
ing mass and histogram rule error to concentration questions about independent sums. Section 6
shows that Hoeffding’s inequality, the Angluin-Valiant bound, Bernstein’s inequality and Bennett’s
inequality are all inadequate for the extremely heterogeneous independent sum problem underlying
the missing mass. Section 7 then derives a concentration inequality for the missing mass directly
from the Gibbs-variance lemma. Section 8 derives an incomparable concentration inequality for
the missing mass from a lemma of Kearns and Saul (1998). Section 9 then derives a concentration
inequality for histogram rule error from the Kearns-Saul lemma and convenient but inessential use
of the Gibbs-variance lemma.

2. The Exponential Moment Method

The main technical challenge in proving the results of this paper is the analysis of extremely het-
erogeneous independent sums. It is possible to show that standard concentration inequalities for
independent sums (Hoeffding’s inequality, the Angluin-Valiant bound, Bernstein’s inequality, and
Bennett’s inequality) are insufficient for extreme heterogeneity. Hence we must go back to the
underlying exponential moment method used to prove the standard inequalities.

Let X be any real-valued random variable with finite mean. LetDP(X,x) be P(X ≥ x) if x≥
E[X] andP(X ≤ x) if x< E[X]. The following lemma is the central topic of Chernoff’s classic paper
(Chernoff, 1952).

Lemma 1 (Chernoff) For any real-valued variable X with finite meanE[X] we have the following
for any x where the “entropy” S(X,x) is defined as below.

DP(X, x) ≤ e−S(X,x) (1)

896
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S(X,x) = sup
β

xβ− lnZ(X, β) (2)

Z(X, β) = E
[
eβX
]

(3)

Lemma 1 follows, essentially, from the observation that forβ ≥ 0 we have the following.

P(X ≥ x)≤ E
[
eβ(X−x)

]
= e−βxE

[
eβX
]

= e−(xβ−lnZ(X, β)) (4)

Lemma 1 is called the exponential moment method because of the first inequality in (4).
In this paper we use some further general observations about the exponential moment method.

For any real-valued random variableX there exists a unique largest open interval(βmin, βmax) (pos-
sibly with infinite endpoints) such that forβ ∈ (βmin,βmax) we have thatZ(X,β) is finite. For a
discrete distribution, and forβ ∈ (βmin, βmax), the Gibbs distributionPβ can be defined as follows.

Pβ(X = x) =
1

Z(X, β)
P(X = x)eβx

For β ∈ (βmin, βmax) we define the expectation off (X) at inverse temperatureβ as follows.

Eβ [ f (X)] =
1

Z(X, β)
E
[

f (X)eβX
]

The distributionPβ and the expectation operator Eβ [·] are both easily generalized to continuous
distributions.

For β ∈ (βmin, βmax) let σ2(X, β) be Eβ
[
(X−Eβ [X])2

]
. The quantityσ2(X, β) is the Gibbs-

variance at inverse temperatureβ. Forβ ∈ (βmin,βmax) we letKL(Pβ||P) denote the KL-divergence
from Pβ to P which can be written as follows where the first line is the general definition of KL-
divergence.

KL(Pβ||P) = Eβ

[
ln

dPβ(X)
dP(X)

]

= Eβ

[
ln

eβX

Z

]

= Eβ [βX]−Eβ [lnZ]

= Eβ [X]β− lnZ (5)

Letxmin be the greatest lower bound of the set of all values of the form Eβ [X] for β∈ (βmin, βmax)
and letxmax be the least upper bound of this set. If the open interval(xmin, xmax) is not empty then
Eβ [X] is a monotonically increasing function ofβ ∈ (βmin, βmax). Forx∈ (xmin, xmax) defineβ(x)
to be the unique valueβ satisfying Eβ [X] = x. Finally we define a definite double integral notation.

Definition 2 For any continuous function f we define the definite double integral
∫∫ x

a f (s) d2s to be
F(x) where F is the unique function satisfying F(a) = 0, F′(a) = 0, and F′′(x) = f (x) where F′(x)
and F′′(x) are the first and second derivatives of F respectively.
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To calculate
∫∫ b

a f (z)d2z we can use
∫∫ b

a f (z)d2z= F(b)−F(a)−F ′(a)(b− a) whereF(x) is
the indefinite integral

∫∫
f (z)d2z, i.e., any functionF with F ′′(x) = f (x). For ε small we have the

following. ∫∫ a+ε

a
f (z)d2z≈ 1

2
f (a)ε2

For any doubly differentiable functionf we can writef as follows.

f (x) = f (a)+ f ′(a)(x−a)+
∫∫ x

a
f ′′(z)d2z (6)

We now have the following general theorem.

Lemma 3 (Gibbs-variance lemma)For any real-valued variable X, any x∈ (xmin,xmax), andβ ∈
(βmin, βmax) we have the following.

S(X, x) = xβ(x)− lnZ(X, β(x)) (7)

= KL(Pβ(x)||P) (8)

=
∫∫ x

E[X]

d2z
σ2(X, β(z))

(9)

lnZ(X, β) = E0 [X]β+
∫∫ β

0
σ2(X, γ)d2γ (10)

Before proving this lemma we first discuss its significance. It is important to note that the
theorem makes no assumptions aboutX—there are no boundedness or independence assumptions
of any form. Furthermore, Equation (9) implies that forε small we have the following.

S(X,E0 [X]+ ε)≈ ε2

2σ2(X, 0)

In any bound of the formDP(X, E0 [X]+ε)≤ e− f (ε) proved by the exponential moment method we
must have the following for smallε.

f (ε)≤ S(X, E[X]+ ε)≈ ε2

2σ2(X, 0)

So f (ε) must be quadratic (or higher order) inε and the constant of the quadratic term can not
exceed 1/2σ2.

An interesting aspect of Lemma 3 is the connection it establishes between the general exponen-
tial moment method and general concepts of statistical mechanics. Up to sign conventions (7) is the
standard statistical mechanics relation between the energyx, the entropyS, the inverse temperature
β, and the Gibbs free energy(lnZ)/β. Here we have thatSandβ have the opposite sign from stan-
dard thermodynamic conventions. The sign convention adopted here makesSpositive and causes
the sign ofβ to match to the sign of the deviation Eβ [X]−E0 [X].

898
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3. Some Standard Concentration Inequalities

Although Lemma 3 makes no assumptions onX, it can be used in deriving more specialized bounds
for, say, independent sums of bounded variables. ConsiderX = ∑i Xi where theXi are independent
and eachXi is bounded to an interval of widthbi . In this case we haveσ2(Xi, β)≤ b2

i /4. It follows
thatσ2(X, β)≤ (1/4)∑i b

2
i . Formula (9) then immediately implies the following.

S(X, E0 [X]+ ε)≥ 2ε2

∑i b
2
i

(11)

Combining this with (1) yields the following.

DP(X, E0 [X]+ ε)≤ e−2ε2/(∑i b
2
i ) (12)

Formula (12) is the familiar Hoeffding inequality (Hoeffding, 1963). We will generally write bounds
in the form of (11) rather than the more familiar (12) because of the interaction of these bounds with
other lemmas, e.g., Lemma 4 at the end of this section or the lemmas in Section 5.

Next considerX = ∑i Xi where theXi are independent Bernoulli variables. Forβ ≤ 0 we have
the following.

σ2(X, β) = ∑
i

Pβ(Xi = 1)
(
1−Pβ(Xi = 1)

) ≤ ∑
i

Pβ(Xi = 1)

≤ ∑
i

P0(Xi = 1) = ∑
i

E0 [Xi] = E0 [X]

Formula (9) then yields the following.

S(X, E0 [X]− ε)≥ ε2

2E0 [X]
(13)

This is the lower deviation Angluin-Valiant bound (Angluin and Valiant, 1979, Hagerup and R¨ub,
1989). A form of the upper-deviation Angluin-Valiant can be derived using the following observa-
tion.

σ2(X, β) = ∑
i

Pβ(Xi = 1)
(
1−Pβ(Xi = 1)

) ≤ ∑
i

Pβ(Xi = 1)

≤ Eβ [X]

σ2(X, β(x)) ≤ x (14)

Combining (9) with (14) yields the following.

S(X, E0 [X]+ ε) ≥
∫∫ E0[X]+ε

E0[X]

d2z
z

(15)

= E0 [X]H
(

ε
E0 [X]

)
(16)

where

H(t) =
∫∫ 1+t

1

1
x

d2x = (1+ t) ln(1+ t)− t
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Formula (16) is Bennett’s inequality for the Poisson limit where eachpi is very small so that
σ2(X, 0) is essentially equal to E0 [X]. Note that in (16) we have thatε can be either positive or
negative. It is interesting to note that in the Poisson limit formula (15) holds with equality and hence
Bennett’s inequality corresponds to the exact Chernoff entropy for the number of poison arrivals.
This observation implies that (16) is the tightest possible concentration inequality provable by the
exponential moment method forDP(X, E0 [X]+ ε) for the caseX = ∑i Xi with Xi independent and
Bernoulli provided that we require the bound be a function ofε and E0 [X]. For t ≥ 0 it is possible
to show thatH(t)≥ t2/(2+(2/3)t) and (16) then yields the following.

S(X, E0 [X]+ ε)≥ ε2

2(E0 [X]+ 1
3ε)

(17)

Equation (17) is Bernstein’s inequality in the case of the Poisson limit. For the case ofε ≤ E0 [X]
formula (17) implies the following.

S(X, E0 [X]+ ε)≥ ε2

8
3E0 [X]

(18)

Formula (18) is the upper deviation Angluin-Valiant bound although the bound is usually stated
with the constant 3 replacing 8/3.

The following lemma implies that all of the inequalities discussed above generalize to indepen-
dent sums of variables bounded to[0,1].

Lemma 4 Let Y= ∑i Yi with Yi independent and Yi ∈ [0,1]. Let X= ∑i Xi with Xi independent and
Bernoulli and withE[Xi] = E[Yi ]. For any such X and Y we have S(Y, y)≥ S(X, y).

This lemma follows from the observation that for any convex functionf on the interval[0,1] we
have thatf (x) is less than(1−x) f (0)+x f(1) and so we have the following.

E
[
eβYi

]
≤ E

[
(1−Yi)+Yie

β
]

= (1−E[Xi])+E[Xi]eβ = E
[
eβXi

]
So we get that lnZ(Y, β)≤ lnZ(X, β) and the lemma then follows from (2).

4. Proof of Lemma 3

We now turn to the proof of Lemma 3. Formula (7) is proved by showing thatβ(x) is the optimalβ
in (2). More specifically, we first note the following simple relations forβ ∈ (βmin, βmax).

d lnZ(X, β)
dβ

=
E
[
XeβX

]
Z(X, β)

= Eβ [X] (19)

d2 lnZ(X, β)
dβ2 =

E
[
X2eβX

]
Z(X, β)−E

[
XeβX

]2
Z2(X, β)

= Eβ
[
X2]−Eβ [X]2

= σ2(X, β) (20)

To optimize (2) we now differentiatexβ− lnZ(X, β) with respect toβ. By (19) this derivative is
x−Eβ [x]. Setting the derivative to zero givesx = Eβ [x] or, by definition,β = β(x). To see that
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this is a minimum note that (20) implies that the second derivative isσ2(β) and hence non-negative.
Equation (8) follows from (7) and (5). Equation (10) follows from (19), (20), and (6).

To derive (9) we consider derivatives of the entropyS(β(x)) with respect to the deviationx.

S(β(x)) = xβ(x)− lnZ(X, β(x))

dS(β(x))
dx

= β(x)+x
dβ(x)

dx
− d lnZ(X, β)

dβ
dβ(x)

dx

= β(x)+x
dβ(x)

dx
−Eβ(x) [X]

dβ(x)
dx

= β(x) (21)

d2S(β(x))
dx2 =

dβ(x)
dx

= 1/

(
dEβ [X]

dβ

)

=
1

σ2(X, β(x))
(22)

Finally, (9) follows from (21), (22) and (6).

5. Negative Association

The analysis of the missing mass and histogram rule error involve sums of variables that are not
independent. However, these variables are negatively associated—an increase in one variable is
associated with decreases in the other variables. Formally, a set of real-valued random variablesX1,
. . ., Xn is negatively associated if for any two disjoint subsetsI andJ of the integers{1, . . . , n}, and
any two non-decreasing, or any two non-increasing, functionsf from R|I | to R andg from R|J| to R
we have the following.

E[ f (Xi , i ∈ I)g(Xj , j ∈ J)]≤ E[ f (Xi , i ∈ I)]E[g(Xj , j ∈ J)]

Dubhashi and Ranjan (1998) give a survey of methods for establishing and using negative associa-
tion. This section states some basic facts about negative association.

Lemma 5 Let X1, . . ., Xn be any set of negatively associated variables. Let X′
1, . . ., X′

n be indepen-
dent shadow variables, i.e., independent variables such that X′

i is distributed identically to Xi. Let
X = ∑i Xi and X′ = ∑i X

′
i . For any set of negatively associated variables we have S(X,x)≥ S(X′,x).

Proof

Z(X, β) = E
[
eβX
]

= E
[
Πie

βXi

]
≤ ΠiE

[
eβXi

]
= E

[
eβX′]

= Z(X′,β)

The lemma now follows from the definition ofS, i.e., Equation (2).
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Lemma 6 Let S be any sample of m items (ball throws) drawn IID from a fixed distribution on the
integers (bins){1, . . . , V}. Let c(i) be the number of times integer i occurs in the sample. The
variablesc(1), . . ., c(V) are negatively associated.

Lemma 7 For any negatively associated variables X1, . . ., Xn, and any non-decreasing functions
f1, . . ., fn, we have that the quantities f1(X1), . . ., fn(Xn) are negatively associated. This also holds
if the functions fi are non-increasing.

Lemma 8 Let X1, . . ., Xn be a negatively associated set of variables. Let Y1 . . ., Yn be 0-1 (Bernoulli)
variables such that Yi is a stochastic function of Xi, i.e., P(Yi = 1 |X1, . . . ,Xn,Y1, . . . ,Yi−1,Yi+1, . . . ,Yn)=
P(Yi = 1 | Xi). If P(Yi = 1 | Xi) is a non-decreasing function of Xi then Y1, . . ., Yn are negatively as-
sociated. This also holds if P(Yi = 1 | Xi) is non-increasing.

Proof

E[ f (Yi , i ∈ I)g(Yj , j ∈ J)] = E[E[ f (Yi , i ∈ I)g(Yj , j ∈ J) | X1, . . . ,Xn]]
= E[E[ f (Yi , i ∈ I) |Xi, i ∈ I ]E[g(Yj , j ∈ J | Xj , j ∈ J)]]
≤ E[E[ f (Yi , i ∈ I) |Xi, i ∈ I ]]E[E[g(Yj , j ∈ J | Xj , j ∈ J)]]
= E[ f (Yi , i ∈ I)]E[g(Yj , j ∈ J)]

6. The Missing Mass: Inadequacy of Standard Inequalities

Suppose that we draw words (or any objects) independently from a fixed distribution over a count-
able (possibly infinite) set of wordsV. We let the probability of drawing wordw be denoted asPw.
For a sample ofmdraws, the missing mass, denotedX, is the total probability mass of the items not
occurring in the sample, i.e.X = ∑w6∈SPw. Let Xw be a Bernoulli variable which is 1 if wordw does
not occur in the sample and 0 otherwise. The missing mass can now be written asX = ∑w PwXw. In
the discussion below we letQw beP(Xw = 1)≈ e−mPw.

The variablesXw are monotonic functions of the word counts so by Lemmas 6 and 7 we have
that theXw are negatively associated. By Lemma 5 we can then assume that the variablesXw are
independent. McAllester and Schapire (2000) prove thatS(X, ε)≥mε2/3 independent of the size of
V or the distribution onV. Here we review why this result does not follow from standard inequalities
for independent sums.

Hoeffding’s inequality (Hoeffding, 1963) yields the following.

S(X,E[X]+ ε)≥ 2ε2

∑w P2
w

In the missing mass application we have that∑V
i=1P2

w can beΩ(1) and so Hoeffding’s inequality
yields a bound that isO(1) rather than the requiredΩ(m).

We now consider the Angluin-Valiant bound (13). LetPmax = maxw Pw. DefineY = X/Pmax.
Lemma 4 implies that the Angluin-Valiant bound (13) generalizes to sums of independent variables
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bounded to[0,1]. Applying this generalization toY yields the following forε ≥ 0.

S(X, E0 [X]− ε) = S(Y, E0 [Y]− ε
Pmax

)

≤ ε2

2P2
maxE0 [Y]

=
ε2

2PmaxE0 [X]
(23)

To demonstrate the inadequacy of (23) take|V| to bem+ 1, takePu to be 1/2 whereu is a distin-
guished high probability word and takePw = 1/(2m) for w 6= u. We then have thatPmax = 1/2 and
E0 [X] = ∑V

i=1 PwQw ≈ 1/(4e). In this case (23) isO(1) rather thanΩ(m).
An important observation for the missing mass is thatσ2(X) is O(1/m). In particular we have

the following where we use negative association ande−x ≤ 1/(ex) for x≥ 0.

σ2(X) ≤ ∑
w

P2
wQw(1−Qw)≤∑

w
P2

wQw

≤ ∑
w

P2
we−mPw ≤∑

w
Pw/(em)

≤ 1/(em)

Sinceσ2(X) is O(1/m) we might naturally hope to use Bernstein’s inequality. The general form
of Bernstein’s inequality states that forY = ∑wYw with Yw independent, with zero mean, and with
Yw ≤ c, we have the following.

S(X ≥ E[X]+ ε)≥ ε2

2σ2 + 2
3cε

For the lower deviation of the missing mass we can takeYw = Pw(Qw−Xw) in which casec can
be taken to be maxw PwQw ≤ 1/(em). So Bernstein’s inequality handles the downward deviation
of the missing mass with a slightly weaker constant than that derived from (9) in Section 7. For
the upward deviation of the missing mass, however, we takeYw = Pw(Xw−Qw) in which case we
need to takec≥maxwPw(1−Qw). In this case the same example that defeats the Srivistav-Stranger
bound defeats Bernstein’s inequality—althoughσ2 ≤ 1/(em) we have thatcε can be as large as
c = 1/4. So we get a bound that isO(1) rather thanΩ(m).

The general form of Bennett’s inequality states that under the same conditions as Bernstein’s
inequality we have the following.

S(X ≥ E[X]+ ε)≥ σ2

c2 H
( cε

σ2

)
HereH(t) =

∫∫ 1+t
1 1/x d2x = (1+ t) ln(1+ t)− t. The same example again defeats this bound for

upward deviations of the missing mass. Again, whileσ2 is O(1/m), we have thatc andε can both
beΩ(1). This implies thatt = cε/σ2 can beΩ(m) in which case we have the following.

σ2

c2 H
( cε

σ2

)
≤O

(
1
m

(1+m) ln(1+m)
)

So we get a bound that isO(lnm) rather thanΩ(m).
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7. A First Missing Mass Result

Here we derive both upper and lower concentration inequalities for the missing mass from (9) and
(10) respectively. In Section 8 the constants in the upper bound will be improved. For the downward
deviation we can use the following corollary of (9).

Lemma 9 Let X = ∑i biXi where the Xi are independent Bernoulli variables and bi ≥ 0. Let Qi be
E[Xi]. For ε ≥ 0 we have the following.

S(X,E[X]− ε) ≥ ε2

2∑V
i=1 Qib2

i

(24)

Formula (24) follows from (9) and the following which holds forβ ≤ 0.

σ2(X, β) = ∑
i

Qi(β)(1−Qi(β))b2
i

≤ ∑
i

Qi(β)b2
i

≤ ∑
i

Qib
2
i

In the missing mass problem we haveQw ≤ e−mPw and the argument in Section 6 showing that
σ2(X)≤ 1/(em) also shows that∑w P2

wQw≤ 1/(em). So we have the following downward deviation
result which has a better constant than we get from Bernstein’s inequality.

Theorem 10 For the missing mass X as defined in Section 6, and forε ≥ 0, we have the following.

S(X, E[X]− ε) ≥ emε2

2

We now derive an upward-deviation missing mass bound. This derivation is a variant of the
derivation by McAllester and Schapire (2000) but benefits from the general statement of (10). We
first note the following corollary of (10).

Lemma 11 Let X be any real-valued random variable and letβmax≥ 0 andσmax≥ 0 be constants
such that for0≤ β ≤ βmax we haveσ2(X, β)≤ σ2

max. For 0≤ ε ≤ βmaxσ2
max we have the following.

S(X, E0 [X]+ ε)≥ ε2

2σ2
max

To see this note that by (10), for 0≤ β ≤ βmax we have the following.

lnZ(X, β)≤ E0 [X]β+
1
2

σ2
maxβ

2

Inserting this into (2) and settingβ equal toε/σ2
max≤ βmax proves the lemma.

For the missing mass problem we have E[X]≥ 0 and Equation (10) implies that forβ ≥ 0 we
haveZ≥ 1. This implies thatPβ(Xw = 1)≤QwePwβ. This implies the following.

σ2(X, β)≤∑
w

P2
wPβ(Xw = 1)≤∑

w
P2

we−(m−β)Pw
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We now consider a constantβmax in the interval[0,m]. For anyβ in [0,βmax] we now have the
following where we usee−x ≤ 1/(ex) for x≥ 0.

σ2(X, β) ≤ ∑
w

Pw

e(m−βmax)
=

1
e(m−βmax)

So for a givenβmax≤ m we can takeσ2
max = 1/[e(m− βmax)]. We can now apply Lemma 11 for

ε ≤ βmax/[e(m−βmax)]. Solving forβmax as a function ofε gives the following.

βmax =
eεm

1+eε

Note that this satisfiesβmax≤ m. Solving forσ2
max as a function ofε we get the following.

σ2
max =

1+eε
em

Applying Lemma 11 now yields the following.

Theorem 12 For the missing mass X as defined in Section 6 we have the following forε ≥ 0.

S(X, E[X]+ ε) ≥ emε2

2(1+eε)

For 0≤ ε ≤ 1 this gives the following.

S(X, E[X]+ ε)≥ 1
3

mε2

8. A Second Solution

Now we give a concentration inequality for the upward-deviation of the missing mass that is not
based on (9) or (10). Rather it is based on the following lemma of Kearns and Saul (1998).

Lemma 13 (Kearns and Saul)For a Bernoulli variable Y we have the following where Q is P(Y = 1).

sup
β

lnZ(bY, β)−E0 [bY]β
β2 =

(1−2Q)b2

4ln 1−Q
Q

(25)

lnZ(bY, β) ≤ E0 [bY]β+
(1−2Q)b2

4ln 1−Q
Q

β2 (26)

≤ E0 [bY]β+
b2

4ln 1
Q

β2 (27)

We now make use of the following lemma whose proof is similar to the proof of Lemma 11.
This lemma will also be important in Section 9.

Lemma 14 If c is such that for allβ we havelnZ(X, β)≤E[X]β+cβ2 then (2) implies S(X, E[X]+
ε)≥ ε2/(4c).
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Formula (27) and observation 14 now immediately yield the following.

Lemma 15 Let X = ∑V
i=1 biXi where the Xi are independent Bernoulli variables and bi ≥ 0. Let Qi

beE[Xi]. For ε ≥ 0 we have the following.

S(X,E[X]+ ε) ≥ ε2

∑V
i=1

b2
i

ln 1
Qi

Lemma 15 now immediately solves the upward-deviation of the missing mass problem. Let
X = ∑w PwXw be the missing mass variable withQw = P(Xw = 1) ≤ e−mPw. We now have the
following.

∑
w

P2
w

ln(1/Qw)
≤∑

w

Pw

m
≤ 1

m

Then, Lemma 15 yields the following.

Theorem 16 For the missing mass X as defined in Section 6 we have the following.

S(X, E[X]+ ε) ≥ mε2

We have that theorem 16 is superior to theorem 12 forε ≥ (1/2−1/e) ≈ .07.

9. Histogram Rule Error

Now we consider the problem of learning a histogram rule from an IID sample of pairs〈x,y〉 ∈
X ×Y drawn from a fixed distributionD on such pairs. The problem is to find a ruleh mapping
X to the two-element set{0,1} so as to minimize the expectation of the lossl(h(x),y) wherel is a
given loss function from{0,1}×Y to the interval[0,1]. In the classification setting one typically
takesY to be{0,1}. In the decision-theoretic settingy is the hidden state and can be arbitrarily
complex andl(h(x),y) is the cost of taking actionh(x) in the presence of hidden statey. In the
general case (covering both settings) we assume onlyh(x) ∈ {0,1} and`(h(x),y) ∈ [0,1].

We are interested in histogram rules with respect to a fixed clustering. We assume a given cluster
functionC mappingX to the integers from 1 tok. We consider a sampleS of m pairs drawn IID
from a fixed distribution onX ×Y . For any cluster indexj, we defineSj to be the subset of the
sample consisting of pairs〈x,y〉 such thatC(x) = j. We define c( j) to be|Sj |. For any cluster index
j andw∈ {0,1} we definel j(w) and l̂ j(w) as follows.

l̂ j(w) =
1

c( j) ∑
〈x,y〉∈Sj

l(w,y), l j(w) = E〈x,y〉∼D |C(x)= j [l(w,y)]

If c( j) = 0 then we definêl j(w) to be 1. We now define the rulêh andh∗ from class index to labels
as follows.

ĥ( j) = argmin
w∈{0,1}

l̂ j(w), h∗( j) = argmin
w∈{0,1}

l j(w)

Ties are broken stochastically with each outcome equally likely so that the ruleĥ is a random
variable only partially determined by the sampleS. We are interested in the generalization loss of
the empirical rulêh.

l(ĥ) = E〈x,y〉∼D

[
l(ĥ(C(x)),y)

]
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Theorem 17 For l(ĥ) defined as above we have the following for positiveε.

S
(
l(ĥ),E

[
l(ĥ)

]− ε
) ≥ mε2

7
(28)

S
(
l(ĥ),E

[
l(ĥ)

]
+ ε
) ≥ mε2

9
(29)

To prove this we need some additional terminology. For each class labelj definePj to be the
probability over selecting a pair〈x,y〉 thatC(x) = j. DefineL j to be l j(1−h∗( j))− l j (h∗( j)). In
other words,L j is the additional loss on classj whenĥ assigns the wrong label to this class. Define
the random variableXj to be 1 if ĥ( j) 6= h∗( j) and 0 otherwise. The variableXj represents the
statement that the empirical rule is “wrong” (non-optimal) on classj. We can now express the
generalization loss of̂h as follows.

l(ĥ) = l(h∗)+∑
i

PiLiXi

The variableXj is a monotone stochastic function of the count c( j)—the probability of error de-
clines monotonically in the count of the class. By Lemma 8 we then have that the variablesXi are
negatively associated so we can treat them as independent. To prove theorem 17 we start with an
analysis ofP(Xj = 1).

Lemma 18

P(Xj = 1) ≤ 3e−
3
16mPj L2

j (30)

P(Xj = 1) ≤ 3e−
1
2(1−Lj )mPj L2

j (31)

Proof To prove this lemma we consider a thresholdy≤ mPj and show the following.

P(Xj = 1) ≤ P(c( j)≤ y)+P(Xj = 1 | c( j)≥ y) (32)

P(c( j)≤ y) ≤ e−(mPj−y)2
/(2mPj ) (33)

P(Xj = 1 | c( j)≥ y) ≤ 2e
−2y

(
L j
2

)2

(34)

Formula (33) follows form the Angluin-Valiant bound. To prove (34) we note that ifXj = 1 then
either l̂ j(h∗( j)) ≥ l j(h∗( j)) + L j/2 or l̂ j(1− h∗( j)) ≤ l j(1− h∗( j))− L j/2. By a combination of
Hoeffding’s inequality and the union bound we have that the probability that one of these two
conditions holds is bounded by the left hand side of (34). Settingy to 3

8mPj yields the following
which implies (30).

P(Xj = 1)≤ e−
25
128mPj +2e−

3
16mPj L2

j

Settingy to (1−Li)mPgives the following which implies (31).

P(Xj = 1)≤ e−
1
2mPj L2

j +2e−
1
2(1−Lj )mPj L2

j
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We now prove (28) using (30) and (10). SinceXi is bounded to the interval[0,1] we have the
following.

σ2(PiLiXi, β)≤ 1
4

P2
i L2

i (35)

For x≤ E[X] we haveβ(x)≤ 0 and forβ ≤ 0 we have the following.

σ2(PiLiXi, β) = P2
i L2

i Pβ(Xi = 1)(1−Pβ(Xi = 1))

≤ P2
i L2

i Pβ(Xi = 1)

≤ P2
i L2

i P0(Xi = 1)

≤ P2
i L2

i 3e−
3
16mPiL2

i (36)

Now let α = (16/3) ln 12. For i satisfyingmPiL2
i ≤ α we use (35) and fori satisfyingmPiL2

i >
α we use (36). This gives the following where in deriving (37) we use the fact thatxe−kx is a
monotonically decreasing function ofx for x > 1/k.

lnZ(X, β) ≤ E0 [X]β+
1
2


 ∑

mPiL2
i ≤α

Pi

m

(
mPiL2

i

4

)
+ ∑
mPiL2

i >α

Pi

m

(
mPiL

2
i 3e−

3
16mPiL2

i

)β2

≤ E0 [X]β +
1
2


 ∑

mPiL2
i ≤α

Pi

m

(α
4

)
+ ∑

mPiL2
i >α

Pi

m

(
3αe−

3
16α
)β2 (37)

= E0 [X]β +
1
2

(
∑
i

Pi

m

(α
4

))
β2

= E0 [X]β +
1
2

( α
4m

)
β2 (38)

Formula (28) now follows from (38) and a variant of observation 14. The proof of (29) is similar.
Let γ = 16(2+ ln3)/3. For i satisfyingmPiL2

i ≤ γ we use (35). Fori satisfyingmPiL2
i > γ we use

(27) which yields the following.

lnZ(PiLiXi, β)≤ E0 [X]β+

(
P2

i L2
i

4
(

3
16mPiL2

i − ln3
)
)

β2 (39)

Combining (35) and (39) yields the following.

lnZ(X, β) ≤ E0 [X]β +
1
2


 ∑

mPiL2
i ≤γ

Pi

m

(
mPiL2

i

4

)
+ ∑

mPiL2
i >γ

Pi

m

(
mPiL2

i

2
(

3
16mPiL2

i − ln3
)
)β2

= E0 [X]β +
1
2


 ∑

mPiL2
i ≤γ

Pi

m

(
mPiL2

i

4

)
+ ∑

mPiL2
i >γ

Pi

m


 1

2
(

3
16− ln3

mPiL2
i

)



β2

≤ E0 [X]β +
1
2


 ∑

mPiL2
i ≤γ

Pi

m

( γ
4

)
+ ∑

mPiL2
i >γ

Pi

m


 1

2
(

3
16− ln3

γ

)



β2
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= E0 [X]β +
1
2


 ∑

mPiL2
i ≤γ

Pi

m

( γ
4

)
+ ∑

mPiL2
i >γ

Pi

m

(
γ

2
( 3

16γ− ln3
)
)
β2

= E0 [X]β +
1
2

(
∑
i

Pi

m

( γ
4

))
β2

= E0 [X]β +
1
2

( γ
4m

)
β2 (40)

Formula (29) now follows from (40) and Lemma 14.

10. Conclusions and Future Work

We have given concentration inequalities for the missing mass and for histogram rule error. In
proving these results we have found it convenient to use a Gibbs-variance lemma relating Chernoff
entropy to the variance of the Gibbs distribution for an arbitrary real valued random variable. There
is a clear mismatch between the generality of the Gibbs-variance lemma, which applies to an arbi-
trary real valued random variable (an arbitrary configuration function) and the uses of this lemma
here which are restricted to the analysis of independent sums. But it is not immediately obvious how
to use the Gibbs-variance lemma in more complex settings such as those addressed by Talagrand’s
inequality or information-theoretic methods (McDiarmid, 1998, gives an overview of these meth-
ods). It seems likely that many quantities, possibly the cross-entropy of ann-gram language model,
combine the extreme heterogeneity of the missing mass problem with coupling (non-independence)
that defeats analysis by negative association. To prove concentration for such quantities it seems
likely that sophisticated methods for handling difficult non-independence will need to be extended
to handle extreme heterogeneity.

The concentration inequality for histogram rule error seems relevant in bounding the general-
ization error of decision trees. Fix a scheme for coding decision trees with finite bit strings. A
use of Hoeffding’s inequality, the Kraft inequality for codings, and the union bound can be used to
show that, with probability at least 1−δ over the choice of a training sample of sizem, we have the
following where`(T) is the generalization of error of the treeT, ˆ̀(T) is the error rate ofT on the
training data, and|T| is the number of bits it takes to codeT (McAllester, 1998).

∀T `(T)≤ ˆ̀(T)+

√
(ln2)|T|+ ln(1/δ)

2m
(41)

Related results are given by Lugosi and Nobel (1996), Kearns and Mansour (1998), Langford and
Blum (1999), and McAllester and Mansour (2000). A decision tree can be viewed as composed
of two parts—a tree structure and the leaf labels. The tree structure defines a clustering—one
cluster for each leaf—and the leaf labels specify a label for each cluster. If we allow a compact
representation of tree structure then the number of bits needed to specify the structure can be small
compared to the number of bits needed to specify the leaf labels. For example, suppose that we
want to classify items withd binary-valued features. We can specify a tree structure by specifying a
sequence ofk features to test. In this case the number of bits needed to specify the tree structure is
O(k lnd) but the number of bits needed for the leaf labels equals the number of leaves which is 2k.
More flexible methods of describing tree structure compactly are of course possible. We would like
a version of (41) that is penalized by the bit length of the compactly described tree structure rather
than the structure complexity plus the number of leaves.
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Now consider a tree structureT and letT(S) be the histogram rule defined by the clustering
defined byT and the sampleS. The concentration inequality for histogram rules implies that for a
fixed T we have that the error ratè(T(S)) is near its expectation with high confidence. Suppose
that we could find an error estimatorˆ̀(T,S) satisfying the following two properties.

E
[

ˆ̀(T, S)
] ≥ E[`(T(S))] (42)

S( ˆ̀(T,S), ˆ̀(T,S)+ ε) ≥ Ω(mε2) (43)

For any such estimator̀̂(T, S) we have the following with probability at least 1−δ over the choice
of the sample whereT ranges over tree structures rather than full trees.

∀T `(T(S))≤ ˆ̀(T, S)+O

(√
|T|+ ln(1/δ)

m

)
(44)

Formula (44) significantly improves on (41) in the case where the tree structures can be compactly
described and the estimatorˆ̀(T, S) has an expectation near that of`(T(S)). Formula (44) provides
a foundation for data-dependent selection of tree structures—for a given sample one searches for a
tree structure minimizing the bound on generalization error.

The difficulty in using (44) is finding an appropriate estimatorˆ̀(T, S). The empirical error
ˆ̀(T(S)) = E〈x,y〉∼S[`(T(S)(x),y)] has the problem that the labels can overfit—consider the case
where each cluster typically has only one data point. The empirical error ofT(S) fails to satisfy
(42). The leave-one-estimator of`(T(S)) satisfies (42) but fails to satisfy (43). An interesting
candidate is the Laplace error estimator defined as follows, for some constanta.

ˆ̀(T, S) = ∑
i

P̂i min(Q̂i ,1− Q̂i)

P̂i = |Si |/n

Q̂i = (|{〈x,y〉 ∈ Si : y = 1}|+a)/(n+2a)

This error estimator satisfies the conditions of McDiarmid’s theorem and hence satisfies (43). For
sufficiently large values of the constanta it may also satisfy (42). Another approach to deriving a
bound like (44) is to consider least squares regression rather than classification. For least squares
regression the leave-one-out error estimate of`(T(S)) satisfies both (42) and (43). However, we
have not yet proved a concentration inequality for`(T(S)) for least-squares regression. We leave
the problem of derivation a concrete version of (44) for future work.
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