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Abstract

We present sharp bounds on the localized Rademacher averages of the unit ball in a reproducing
kernel Hilbert space in terms of the eigenvalues of the integral operator associated with the kernel.
We use this result to estimate the performance of the empirical minimization algorithm when the
base class is the unit ball of the reproducing kernel Hilbert space.

1. Introduction

In this article we investigate the connections between the random averages associated with kernel
classes and the spectrum of the integral operBtorn,(Q, 1) — L2(Q, W), which is defined by

(Tk F) ( /K (x,y) f(y)duy),

where(Q, 1) is a probability space.

The kerneK is used to generate a Hilbert space, known as a reproducing kernel Hilbert space,
whose unit ball is the class of functions we investigate.

Recall that ifK is a positive definite functioK : Q x Q — R, then by Mercer's Theorem there
is an orthonormal basigp );” ; of Lo([) such thagt x palmost surelyK(x,y) = 321 i@ (X)@(y),
where(A)i” ; is the sequence of eigenvaluesigf(arranged in a non-increasing order) amds the
eigenvector corresponding 4.

Let Hk be the set of functions of the formiZ,a;K(x;,-), wherex; € Q anda € R satisfy
that zi‘f’j:la;ajK(xi,xj) < 1. One can show that this so-called kernel clegsis the unit ball in
the reproducing kernel Hilbert space defined by the integral operator, and that forfegdny,
1f]lee < K

An alternative way to define the reproducing kernel Hilbert space is vigetitere mapIndeed,
if we defined : Q — ¢, by ®(x) = (VA@ (X)), then

Hi = {f() = (B, P())y, | 1Bl < 1}.

In other words, the feature map is a way of embedding the fpane, andHk can be represented
by the unit ball in/,, where eaclf8 € ¢, acts as a functional on the image of fevia the feature
map. Moreover,
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and thus, if|K||. < o then{®(x) : x € Q} is a bounded subset 6§. We refer the reader to Cucker
and Smale (2002) for more details on reproducing kernel Hilbert spaces and their connections to
Learning Theory.

One of the main goals in Statistical Learning Theory is to establish sharp bounds (which hold
with high probability) on the expectation of the excess loss of the function produced by a learning
algorithm, based on the random sample. Here, we focus on one particular algorithm - empirical
minimization. For the sake of simplicity, the learning model we investigate is the noise-free one, in
which the target function one wishes to learn is deterministic, though the same result can be derived
in the noisy case, and with an identical proof. In the noise-free scenario, the learner attempts
to construct an “almost optimal” approximation to an unknown target functiom a given base
classH using the empirical datéX;, T (X))!"_;, where(X;)"_; are independent data points sampled
according to a fixed but unknown probability measum@n Q. The way one measures the “almost
optimality” is via the loss functional. Here, we focus on the squared loss; Recall that the squared
loss class associated with a targetand the base clads is the set of all functions of the form
th=(h—=T)>— (P4T —T)?, whereP4T is the nearest point td in H with respect to the.(L)
norm (that is, the best approximation Bfin the classH with respect to thé., structure endowed
by the underlying measugg.

Given asampléXy, ..., Xn), (T (X1),..., T (Xn)), the empirical minimization algorithm produces
a function f = ¢y, which is a loss function that minimiz€g ; /n(X;). Note that in order to find
the empirical minimizer, it suffices to minimizg!!_, (h— T)?(X;), which is possible because the set
values of(T (X)), are known to the learner.

One general method of obtaining boundsE),rfA = [ f(x)du(x) is based on the fact that the
random empirical structure on the loss class is comparable with the actual structure endowed by
K. For example, the bounds based on the uniform law of large numbers imply that for fegery
F, [E,f —n~13M, f(X)| is small. This additive notion of similarity of the two structures is too
restrictive, both because one has to control the difference uniformly over the entire class and because
of the additive nature of the estimate. It is possible to obtain better bounds, based on a multiplicative
notion of similarity (Bartlett and Mendelson, 2003) which uses the so-clltadized averagesThe
localized averages is a function that measures the richness of a class of functions with respect to a
given probability measure. Roughly speaking, the localized average at 3sdfee expectation of
the supremum of the empirical proceBsf —n~13 , f(X;)|, indexed by the functions in the class
with expectation smaller than This parameter can be used to “filter out” functions which have
a large expectation (and thus are of little significance from the learner’s point of view, because the
empirical minimization algorithm is unlikely to select them) and to identify the scale at which the
function class becomes “intrinsically rich”, that is, the set of functions whose expectation is smaller
than that scale is too rich to enable a useful comparison between the random empirical structure
endowed by the empirical means and the one endowed By simplify notation, denote

[[n — M| = sup
feF

-3 1)

Our main result is motivated by the fact that under mild assumptions on the class, one can esti-
mate the error of the empirical minimizer as a functiofE@fy, — /|, wherel = {f e F : Ef =r}.
To that end, recall the following definition:
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Definition 1.1 A class F is called a Bernstein class of typwith respect to the measure | if there
is some constant B such that for ang £, E, f2 < B(E,f). A class is called star-shaped aroufid
if forevery fe Fand0<t<1,tf eF.

It is straightforward to see that i is a Bernstein class then its star-shaped hull with 0, defined by
{tf :0<t<1 feF}isalsoaBernstein class and with the same type and constant.

The need for the star-shape assumption is to ensure a certain regularity of the class. The idea
is that if the class is star-shaped, its “richness” increases as the scale shrinks. Indeed, any function
encountered at radiuswill have a scaled version at any scale< r. Hence, one can think of the
class as composed of shells which get filledr atecreases, and at a critical valuerathe shell
becomes too large to enable a a useful comparison between the two structures - the empirical and
the real.

The following theorem exhibits the connection betwégn— p|r, and the expected loss of the
empirical minimizer.

Theorem 1.2 (Bartlett and Mendelson, 2003) There exists an absolute constant C for which the
following holds. Let F be a class of functions bounded by b which is star-shaped @amthas
Bernstein typel with a constant B. Give@ <& < 1and r> 0, if E||py — Mg, < (1—a)re, then

with probability larger than

1— exp(—Cazsznmin{LB, %}) ,

the empirical minimizer satisfies that

. Eqf
E,f < —o
m _max{1 E,r},

whereEgh= 25" h(X)and k= {f e F:Ef =r}.

Hence, the critical scale at which the class becomes “too rich” to handle via this line of argu-
mentation is wheti ||y, — /|, ~ r. Let us mention that an estimate on the funcii&ip, — P/, can
sometimes lead to a better error bound via a direct analysis of the empirical minimization process
(Bartlett and Mendelson, 2003), which makes the problem of estimating the localized averages even
more important.

Unfortunately, obtaining bounds on the localized averages is not an easy task in general. The
main result in this article is a sharp estimate on the localized averages of the squared loss class
associated with a kernel base class, given as a function of the eigenvalues of the integral operator
Tk.

Theorem 1.3 There is an absolute constant C for which the following holds. Let K be a kernel such
that ||K||» <1 and let(A;);> ; be the spectrum ofT(arranged in a non-increasing order). SekH

to be the kernel class, let TQ — [0,1] and put F to be the squared loss class. Then, for every
r>1/n,

C
E|lpn — My, < %w(r) ,

wherey(r) = (z;’;lmin{r,)\i})l/z,V: {tf:0<t<1 feF}andV={feV Ef=r}.
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For example, if\; = e ' then it is easy to verify that for every9r < 1,

_imin{r,)\i} <crlog(2/r),

wherec is a suitable absolute constant. Thilig, — pjv, <r/4 forr >
with probability at least 1+ 1 ol

Euf < max{Enf CI(;gn} < CI(r)]gn’

€logn "and by Theorem 1.2,

where the last inequality holds because the empirical expectation of the empirical minimizer is
non-positive.

It is interesting to compare the resulting error bound to the estimates established by Zhang
(2003), who showed that for a large family of convex loss functions, the error rate of the same
problem we tackle isr, wherec is a constant depending on some parameters of the problem (e.g.,
on ||K||«), and thus under very mild assumptions can be considered as an absolute constant, while
the factorr is determined as follows. L&), = 521 Ai/(Ai +A), and letr be such thab; > ¢; and
r/Dy > cot/n, wherec; andc, are constants with similar properties ¢o Then, with probability
larger than - 4exp(—t), Euf is bounded byr. It is easy to check that for evely> 0,

2(N 2(A

Therefore, the conditions anare equivalent to

W(r) > kv, nY2e(n) <r/kevi,

and Zhang’s result can be recovered by the previous theorem, with a slightly different tail esti-
mate. The difficulty in Zhang's approach is that the proof of the error bound depends heavily on the
structure of the Hilbert space, while here, the error bound follows from completely general princi-
ples, and the only place where the geometry of the class appears is in the estimate of the localized
averages.

Note that the bound we obtain on the localized averages is not data-dependent. It differs from the
worst case analysis which can be established via the shattering dimension, (see, e.g., Mendelson and
Schechtman, 2003), because the underlying measure has a strong influence on the bound; indeed, a
change of measure yields a different integral operator and thus a different spectrum. Data dependent
error bounds, which involve the spectrum of the kernel ma(mxm,xj)){‘_j:l where (X)), are
independent random variables distributed accordingwere recently developed by Bartlett et al.
(2003) (see also Lugosi and Wegkamp, 2003).

Let us mention that the learning model we investigate is not the only one used in the context of
kernel classes. In the so-called regularized loss method, rather than restricting the base class to the
unit ball of the reproducing kernel Hilbert space, a larger loss is assigned to functions which have a
large norm in that space. This model will not be discussed in this article, but we refer the reader to
Cucker and Smale (2003) for new results in that direction which are based on entropy estimates.

The article is organized as follows. Firstly we show that for a kernel ¢fass

X
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is determined by the spectrum of the integral operator associated with the kernel (and the measure
p according to which(X;)"_; are distributed). Next, we prove a general result which bounds the
localized averages of the squared loss class in terms of those of the base class, as long as the latter
is convex. In particular, i is the squared loss class associated with a kernel class, we estimate
Esupergi<r |Yii1& f(X)]. Finally, we use the technique péelingto bound the localized aver-

ages of the star-shaped hull of the loss class, which yields the main result, as well as the promised
error bound.

1.1 Technical Preliminaries

Below, we present some preliminary results on empirical, Rademacher and Gaussian processes we
require in the sequel.

ForT C R", let{X; :t € T} be the Gaussian process indexedTbwhose covariance structure
is given by the inner product iR". Hence, for everyt € T, X = 3, giti, where(g)[_, are
independent standard Gaussian variables.

The following comparison theorem for Gaussian processes originated in the work of Slepian,
and is due to Fernique (see Pisier, 1989). We formulate the claim only for a finite indexing set, but
it can be easily extended to more general indexing sets.

Lemma 1.4 Let{Z,1<i<m}and{Y;,1<i < m} be two Gaussian processes which satisfy that,
forevery ij,
1Zi = Zjll2 < Vi = Yjl|2.

Then
EsupzZ; < Esupy,.
| |

Let p be a probability measure dd and set(X;)! ; to be independent random variables dis-
tributed according tp. Denote

-isiéxi -i& f(X)

where(g;){ , are independent Rademacher random variables. Similarly, one can|tglting;ox | -
where(g;){L, are, as above, independent standard Gaussian variables.

The following is a well known symmetrization claim showing tBdu— pa||r andE|| ST €dx ||
are essentially equivalent.

= sup
feF

)

F

Lemma 1.5 (van der Vaart and Wellner, 1996, Milman and Schechtman, 1986) Let 1 be a proba-
bility measure and set F to be a class of functions. Then

n

< 4E|[[p — MF +2

2
Ellpn — M < HE

F

‘Ee

Y

SupE,, f
feF

l n
_Zlgi
ni:
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and

E <CE

F

)

n n
i; €0x, i; Gidx, i

We end this introduction with two concentration inequalities which are at the heart of the proofs
we present.

The first is the well known Bernstein’s inequality (Massart, 2000, van der Vaart and Wellner,
1996).

where C is an absolute constant.

Theorem 1.6 Let | be a probability measure dd and let X, ..., X, be independent random vari-
ables distributed according to p. Given a function® — R, set Z= 3 ; f(X), let b= | f||.. and
put v=nE,f2. Then,

2
Pr{|Z—EuZ| > x} < 2e w93

The following is a version of Talagrand’s inequality, which is a “functional” version of Theorem
1.6. The version we use is from Bousquet (2002).

Theorem 1.7 Let F be a class of functions on a probability spd€e ), such that for every € F,
[ flle <landEuf =0. Let X,...,X, be independent random variables distributed according to p

and set
3 100

If % > nsup ¢ var(f) and v=na? + 2EZ, then for every x- 0

Pr({Z>EzZ+x}) < eXP(“’“(x‘);)) ’

= sup
feF

and
Pr{Z<EzZ-x}) < exp(—vh(\—);)) ,
where I{x) = (14 x)log(1+ x) — x. In particular,

N
Pr({|Z—-FEZ| > x}) < 2exp| — .
({1Z-E2Z| > x)}) < p( M%X)

Throughout this article, all absolute constants are denoted dwyc. Their value may change
from line to line, or even within the same line. We denotedgya constant which depends only on
b.

2. The Localized Averages of a Kernel Class

In this section we investigate the connections between the localized averages of a kernel class (with
respect to a fixed probability measyfeand the eigenvalues of the integral operaior. Lo(1) —
Lo(p) associated with the kernel apgdwhich is defined by

(Tk F) ( /K (x,y) f(y)duy).
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Theorem 2.1 There are absolute constants C and c for which the following holds(N;&t ; be
the non-increasing sequence of eigenvalues of the integral operaiq@ut H¢ to be the unit ball of
the reproducing kernel Hilbert space, and for-r0 set

W(r) = (imin{)x,-,r}) .
J:

If A1 > 1/n, then for every & 1/n,

_iei f(X)

where(X);> , are independent, distributed according to p.

c(r) < iIE, sup

< Cy(r),
\/ﬁ {feHk: E f2<r}

The first part of the proof will be to show that all tHg, norms of the random variable
suprer Y11 & f(X)| are equivalent. This equivalence follows from a general principle based on
concentration.

Lemma 2.2 For every b> 0 there exists a constant, ¢or which the following holds. Let F be a
class of functions bounded by b, s8t= sup ¢ var(f) and assume thatag > 1. Then,
ChOFE
E — > — .
I — W > N

Proof. Without loss of generality, assume that 1 and thab2 = var(g) for someg € F. LetY =
Sit1(9(X) —Eg) and setv = nvar(g). By Bernstein’s inequality there exists an absolute constant
K such that

\"/
EYX vk e} < 7

wherey ., denotes the indicator function. Indeed, since n-var(g) > 1, then for every integek,

EY*X{(iv|2ky5) = ;EYZX{{m\NSIYIS(ml)W} <2v 2k<m+ e °m,
m= m=

wherec is an absolute constant. Thus, the assertion follows by takigfficiently large. Since
EYzX{|Y|§\/\—//2} < V/4 then

Vv \
V= EYZ < Z +EY2X{\N/2§|Y\SKW} + Z

+K%v-Pr ({g << K\/\_/}> ;

Pr({im-ple > 772 1) 2 Pr({ 4 < W< ki) 2

which implies that

<

NI <

and thus

COE

_ > °F
E|ln UHF_\/ﬁ

for another absolute constamt [ ]
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Lemma 2.3 Let Z be a nonnegative random variable which satisfies that there is some constant c,
such that for every integer m,

Pr({|Z—Ez| > mEZ}) < 2e"°™.
Then, for everyl < p < o there is a constantcwhich depends only on p and c, such that
1 1
cp(EZP)» <EZ < (EZP)>.

Proof. By Holder's inequality, theL, norm is larger than th&; norm, and the upper bound is
evident. For the lower one, fix some<lp < « and se=[EZ. Clearly,

EZP = IlEZpX{Z<a} + z IE:Zp)({(m+l)a§2<(m+2)a}-
m=0
SinceZ has an exponential tai’r ({Z > (m+1)a}) < 2e ™ and thus
EZP <aP+2aP 3 (m+2)Pe "™,
m=0

proving thatc,(EZP)Y/P < EZ.
m

Corollary 2.4 For everyl < p < « there is a constant cdepending only on p for which the fol-
lowing holds. Let F be a class of functions boundedLiand let n be such that2 > 1/n, where

02 = sup g var(f). Then, for everl < p < o
n n n p F_]i
<|E
F F

1
Cp <E i;siém :) p <E i;siém i;siém

Proof. Denote byE the expectation with respect to the product meastire: (e @ W)", setY; =
(€, %) putu(Y;) =& f(X) and let

n

i;U(Yi) :

Observe that for every € U, Eu = 0, and that by Theorem 1.7

Z=sup

ueu

X2
Pr({|Z—FEZ| > x}) < 2exp| —————
({12-E2|=x}) < p( 2V+¥>,

for anyv > ncslzJ + 2EZ. Sinceay > Of, then by Lemma 2.2 and Lemma 1.5,
1< no2 <no? <c(EZ)?

and thus
Pr({|Z—EZ| > mEZ}) < 2exp(—c'm)

wherec is an absolute constant. Now the assertion follows from Lemma 2.3. [ ]
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Proof of Theorem 2.1Let Hk be the kernel class and ddt = {f : f € Hk, Ef?< r}. Note that
the indexing seH; is an intersection of a ball and an ellipsoid, making the computation df the
norm of sup.y, | TiL1 & f(Xi)| possible. Indeed, iE andE’ are ellipsoids with the same principal
directions and axe& )i ; and(b;);* ; respectively, then the ellipsol8 whose principal directions
are the same &8 and its axes arémin{a,b;})>> ; satisfies thaB c ENE’ c v/2B. Therefore,
one can replace the detn E’ indexing the Rademacher processBylosing only a multiplicative
factor. In our case, denoBr) = { f|E,f2 <r}. It follows that f € Hk is also inB(r) if and only if
its representing vectds satisfies thaf ;> ; B2\ <r. Hence, as a subset &f,

Hk NB(r { 21[32<1 ZBZA.gr}

implying that ifB C ¢, is defined agB| 5>, WB? < 1}, wherey; = (min{1,r/A;})~1, then

B cH, c vV2B.

Next, one can compute the norm of the supremum of the process indexedbyndeed,

<B JZE o) > | <B <ém8ia’é\/§<ésifﬂ(xj)>a> 2

=Esup
B
<A [ ? A < Ai
<Z ) :Eugacﬂz(xj)zn;ﬁ

Esup
BeB

Finally, to show the thé; and thel, norms of sup |3 & f(X)| are equivalent, it suffices to

prove that
supvar(e-f(X)) = supEf? > },
feH, feH,

=]

whereg is a Rademacher random variable aqi distributed according tp. To that end, letp; be
the eigenfunction ofk associated with the largest eigenvalue and seg = /Tx @1 = A\1@y. Itis
evident thag € Hx and thatE,g? = A; > 1/n. If h =tg for an appropriate selection of 9t < 1,
thenh € Hk as a convex combination gfand O, andEuh2 <r, implying that sup.y EfZ>1/n.
Thus, all theL, norms of|| 3L, €0x ||g are equivalent, which completes the proof. ]

Remark 2.5 Note that the assumption th&t > 1/n is needed only for the lower bound. The upper
estimate holds without that assumption.

3. The Localized Averages of Loss Classes

Here, we establish bounds on the localized averages of the loss class associated with a kernel class
using the main result of the previous section. In fact, the estimate we present is completely general,
and is not restricted to kernel classes, but for arbit@atgss classes associated with a convex base
class for 1< p < o. For the sake of simplicity, the results are formulated and proved for the squared
loss case. Let us mention that all the assertions in this section hold for the agnostic (noisy) learning
scenario for the squared loss, and with the same proofs.
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Formally, letH be a convex class of functions boundedibgnd sefl : Q — [0,b] to be the
target function. For everir € H, recall that the squared loss function associated With ¢/, =
(h—T)2— (P4T —T)?, whereP4T is the metric projection oif ontoH (that is, the nearest point
to T in H with respect to thé,(p) norm), and that the loss classfs= {¢n:he H}.

The first lemma we present is standard and its proof is omitted.

Lemma 3.1 Let F be the squared loss class associated with a target T and a convex class H, and
set b= max{sup,cy [|Nl|«, || T|l }. For everyo € Q", infhen Eq¢h < 0 and for every th' € H and
any xe Q,

(bh— lry )% (x) < 1680%(h— )?(x).

The second preliminary result we require was proved by Mendelson (2002) for a more general
class of loss functionals, based on the notion of uniform convexity.

Lemma 3.2 Let H, T and b be as in Lemma 3.1. Then there are constant€/Cand G (which
depend only on b) such that for evergid,

th <Cth PHTHL <CbE£h
In particular, for every r> 0,
thiEe <y {h: =P, <Cir}.

Now, one has to show that the expectation of supremum of the Gaussian process indexed by
{¢n : Efn <1} can be controlled using the localized Gaussian averages associatedl. with

Theorem 3.3 Let F, H, T and b as in Lemma 3.1. Then, there are constaptard G, which
depend only on b, such that for every10,

Ziglgh igih(xi)‘ :

Proof. For every fixedo = (xg, ..., Xn) we will apply Lemma 1.4 and compare the process indexed
by

sup
{heH Elp<r}

<GCyE sup
{he2H:ER?<C[r }

{(h(x2), -, €n(%n)) }

whereh ranges oveV = {h € H : E¢, <r}, and the process indexed by
V' = {(h(x0),...h(xn)) : h € 2H,Eh? < Cr}

for an appropriate absolute const@ntBy Lemma 3.1, for everip, W € H,

n n

3, (n (%)~ fr (X))* < Co 3 (N~ H°(x)

=Co 3 ((N=PFHT) () = (= PuT) (x))°,

768



ON THE PERFORMANCE OFKERNEL CLASSES

and thus, by Lemma 1.4

Esup
heVv

< CpEsup
heVv

igi(h—PHT)(Xi) :

‘igigh(xl)

Applying Lemma 3.2V C {he H : E(h—PyT)%2 < C{r}, and by setting/” = {h—P4T :h e
H, E(h—PyT)? < C{r} it follows that

Esup
hev

< E sup
ueVv”

zigl (h—=PuT)(

Zlg.

To complete the proof, observe thidtis convex and symmetric, and thhs- P4 T € 2H, and
V"' cV. [ ]

Theorem 3.4 Let H¢ be a kernel class, put T to be a target function bounded bynd set F to

be the squared loss class. Let p be a probability measure andAp)it; to be the sequence of
eigenvalues of the integral operator associated with K and p (arranged in a non-increasing order).
Then, for every &> 1/n,

1/2
n C o
Zl if(X) S% (i;mln{cr,)\i}> ,

where C and c are constants which depend only|i§fi.

1
-E sup
N (ferEf<r}

Proof. Using Lemma 1.5, up to an absolute multiplicative constant, the Gaussian averages upper
bound the Rademacher ones. Hence, it suffices to estimate the localized Gaussian averages of the
loss class, which by Theorem 3.3, are bounded by

219.

whereC andc are constants depending only on the range of functions in the kernel class, and thus,
only on ||K||». Since Mk is an ellipsoid whose axes af@A;)” ;, and since thé; norm is upper

bounded by thé, norm,
n
gih(x) :
S0 )

which can be estimated just as in the proof of Theorem 2.1. [

CE sup
{he2Hk :Eh2<cr}

(x) <C (E sup

{he2Hk :Eh?<cr}

4. Estimating the Loss

Finally, we are in a position to bound the error of the empirical minimization algorithm for a base
class which is a kernel class. By Lemma 3.2, the squared loss class has Bernstein type 1 with a
constant depending only spg || f||. In particular, ifF is the squared loss class associated with
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the kernel clasbklk and the target, then the star-shaped hullBfand 0, denoted by has Bernstein
type 1 with a constant depending only B |«.

Note that
Vr:{feV:Ef:r}:{I;—];:feF,Eer}, (4.1)
and set
r sup gf
(P() {feF Ef<r} zl I ‘

To estimatg|p, — Y|y, we use the notion of peeling.

Lemma 4.1 For every t> 1,
w(tl“r)

Ellbn — My, <
n J; tl

where m is the largest integer for whichr < sup; . Ef and C is an absolute constant.

Proof. Note that by (4.1),

n

r
E|lY €o sup g — (X
izi o {feFEf>r} |[i= IEf ( )'
m n r
=) E sup gi—f(X)
=0 {feFtir<Ef<ti+ir}|i= Ef

56100] < 3o )

m1
< %—jE sup
i= t {feFtir<Ef<ti+1r}

and the claim follows because

n

2,7

Ellpn — My, < E

[ ]
Combining Lemma 4.1 with Theorem 3.4, we obtain our main result, which is the following
estimate on the localized averages of the star-shaped hull of a kernel loss class.

Theorem 4.2 There are absolute constants ¢ and C for which the following holds. Let K be a kernel
such that|K ||, < 1, and let(A;);? ; be the spectrum ofT(arranged in a non-increasing order). Set

Hk to be the kernel class, let TQ — [0,1] and put V to be the star-shaped hull of squared loss
class. Then, for every® 1/n,

C
Efu—pallv, < %wm,
wherey(r) = (z;’;lmin{r,)\i})l/z andV{ ={f eV :Ef=r}.
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Proof. By Lemma 4.1 and Theorem 3.4,
Ellpn — Ml < — S 471y (cal ).
T \/ﬁi;

Observe that for eveny> 0 anda > 1, @(ar) < +/2a(r), from which our assertion easily follows.
To that end, recall tha,; = S, Ai/(r + i), and that(rD,)%? < g(r) < (2rD;)¥/2. Clearly, for
a > 1, P(ar) < +/2a(rDy)Y? < v/2ay(r), as claimed.

]
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