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Abstract
We present sharp bounds on the localized Rademacher averages of the unit ball in a reproducing

kernel Hilbert space in terms of the eigenvalues of the integral operator associated with the kernel.
We use this result to estimate the performance of the empirical minimization algorithm when the
base class is the unit ball of the reproducing kernel Hilbert space.

1. Introduction

In this article we investigate the connections between the random averages associated with kernel
classes and the spectrum of the integral operatorTK : L2(Ω,µ)→ L2(Ω,µ), which is defined by

(TK f ) (x) =
∫

K(x,y) f (y)dµ(y),

where(Ω,µ) is a probability space.
The kernelK is used to generate a Hilbert space, known as a reproducing kernel Hilbert space,

whose unit ball is the class of functions we investigate.
Recall that ifK is a positive definite functionK : Ω×Ω → R, then by Mercer’s Theorem there

is an orthonormal basis(φi)
∞
i=1 of L2(µ) such thatµ×µ almost surely,K(x,y) = ∑∞

i=1 λiφi(x)φi(y),
where(λi)∞

i=1 is the sequence of eigenvalues ofTK (arranged in a non-increasing order) andφi is the
eigenvector corresponding toλi .

Let HK be the set of functions of the form∑∞
i=1aiK(xi , ·), wherexi ∈ Ω and ai ∈ R satisfy

that ∑∞
i, j=1 aiajK(xi ,xj) ≤ 1. One can show that this so-called kernel classHK is the unit ball in

the reproducing kernel Hilbert space defined by the integral operator, and that for everyf ∈ HK,
‖ f‖∞ ≤ ‖K‖∞.

An alternative way to define the reproducing kernel Hilbert space is via thefeature map. Indeed,
if we defineΦ : Ω → `2 by Φ(x) =

(√
λiφi(x)

)∞
i=1, then

HK =
{

f (·) = 〈β,Φ(·)〉`2

∣∣‖β‖`2 ≤ 1
}
.

In other words, the feature map is a way of embedding the spaceΩ in `2 andHK can be represented
by the unit ball in`2, where eachβ ∈ `2 acts as a functional on the image of theΩ via the feature
map. Moreover,

‖Φ(x)‖2
`2

=
∞

∑
i=1

λiφ2
i (x) = K(x,x),
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and thus, if‖K‖∞ < ∞ then{Φ(x) : x∈Ω} is a bounded subset of`2. We refer the reader to Cucker
and Smale (2002) for more details on reproducing kernel Hilbert spaces and their connections to
Learning Theory.

One of the main goals in Statistical Learning Theory is to establish sharp bounds (which hold
with high probability) on the expectation of the excess loss of the function produced by a learning
algorithm, based on the random sample. Here, we focus on one particular algorithm - empirical
minimization. For the sake of simplicity, the learning model we investigate is the noise-free one, in
which the target function one wishes to learn is deterministic, though the same result can be derived
in the noisy case, and with an identical proof. In the noise-free scenario, the learner attempts
to construct an “almost optimal” approximation to an unknown target functionT in a given base
classH using the empirical data(Xi,T(Xi))n

i=1, where(Xi)n
i=1 are independent data points sampled

according to a fixed but unknown probability measureµ on Ω. The way one measures the “almost
optimality” is via the loss functional. Here, we focus on the squared loss; Recall that the squared
loss class associated with a targetT and the base classH is the set of all functions of the form
`h = (h−T)2− (PHT −T)2, wherePHT is the nearest point toT in H with respect to theL2(µ)
norm (that is, the best approximation ofT in the classH with respect to theL2 structure endowed
by the underlying measureµ).

Given a sample(X1, ...,Xn), (T (X1) , ...,T (Xn)), the empirical minimization algorithm produces
a function f̂ = `h, which is a loss function that minimizes∑n

i=1`h(Xi). Note that in order to find
the empirical minimizer, it suffices to minimize∑n

i=1(h−T)2(Xi), which is possible because the set
values of(T(Xi))n

i=1 are known to the learner.
One general method of obtaining bounds onEµ f̂ =

∫
f̂ (x)dµ(x) is based on the fact that the

random empirical structure on the loss class is comparable with the actual structure endowed by
µ. For example, the bounds based on the uniform law of large numbers imply that for everyf ∈
F, |Eµ f − n−1∑n

i=1 f (Xi)| is small. This additive notion of similarity of the two structures is too
restrictive, both because one has to control the difference uniformly over the entire class and because
of the additive nature of the estimate. It is possible to obtain better bounds, based on a multiplicative
notion of similarity (Bartlett and Mendelson, 2003) which uses the so-calledlocalized averages. The
localized averages is a function that measures the richness of a class of functions with respect to a
given probability measure. Roughly speaking, the localized average at scaler is the expectation of
the supremum of the empirical process|Eµ f −n−1∑n

i=1 f (Xi)|, indexed by the functions in the class
with expectation smaller thanr. This parameter can be used to “filter out” functions which have
a large expectation (and thus are of little significance from the learner’s point of view, because the
empirical minimization algorithm is unlikely to select them) and to identify the scale at which the
function class becomes “intrinsically rich”, that is, the set of functions whose expectation is smaller
than that scale is too rich to enable a useful comparison between the random empirical structure
endowed by the empirical means and the one endowed byµ. To simplify notation, denote

‖µn−µ‖F = sup
f∈F

∣∣∣∣∣Eµ f − 1
n

n

∑
i=1

f (Xi)

∣∣∣∣∣
Our main result is motivated by the fact that under mild assumptions on the class, one can esti-

mate the error of the empirical minimizer as a function ofE‖µn−µ‖Fr , whereFr = { f ∈ F : E f = r}.
To that end, recall the following definition:
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ON THE PERFORMANCE OFKERNEL CLASSES

Definition 1.1 A class F is called a Bernstein class of type1 with respect to the measure µ if there
is some constant B such that for any f∈ F, Eµ f 2 ≤ B(Eµ f ). A class is called star-shaped around0
if for every f∈ F and0≤ t ≤ 1, t f ∈ F.

It is straightforward to see that ifF is a Bernstein class then its star-shaped hull with 0, defined by
{t f : 0≤ t ≤ 1, f ∈ F} is also a Bernstein class and with the same type and constant.

The need for the star-shape assumption is to ensure a certain regularity of the class. The idea
is that if the class is star-shaped, its “richness” increases as the scale shrinks. Indeed, any function
encountered at radiusr will have a scaled version at any scaler ′ < r. Hence, one can think of the
class as composed of shells which get filled asr decreases, and at a critical value ofr the shell
becomes too large to enable a a useful comparison between the two structures - the empirical and
the real.

The following theorem exhibits the connection between‖µn−µ‖Fr and the expected loss of the
empirical minimizer.

Theorem 1.2 (Bartlett and Mendelson, 2003) There exists an absolute constant C for which the
following holds. Let F be a class of functions bounded by b which is star-shaped around0 and has
Bernstein type1 with a constant B. Given0 < ε < 1 and r > 0, if E‖µn−µ‖Fr ≤ (1−α)rε, then
with probability larger than

1−exp
(
−Cα2ε2nmin

{ r
B

,
r
b

})
,

the empirical minimizer satisfies that

Eµ f̂ ≤max

{
Eσ f̂
1− ε

, r

}
,

whereEσh = 1
n ∑n

i=1h(Xi) and Fr = { f ∈ F : E f = r} .

Hence, the critical scale at which the class becomes “too rich” to handle via this line of argu-
mentation is whenE‖µn−µ‖Fr ∼ r. Let us mention that an estimate on the functionE‖µn−µ‖Fr can
sometimes lead to a better error bound via a direct analysis of the empirical minimization process
(Bartlett and Mendelson, 2003), which makes the problem of estimating the localized averages even
more important.

Unfortunately, obtaining bounds on the localized averages is not an easy task in general. The
main result in this article is a sharp estimate on the localized averages of the squared loss class
associated with a kernel base class, given as a function of the eigenvalues of the integral operator
TK .

Theorem 1.3 There is an absolute constant C for which the following holds. Let K be a kernel such
that ‖K‖∞ ≤ 1 and let(λi)∞

i=1 be the spectrum of TK (arranged in a non-increasing order). Set HK

to be the kernel class, let T: Ω → [0,1] and put F to be the squared loss class. Then, for every
r ≥ 1/n,

E‖µn−µ‖Vr ≤
C√
n

ψ(r) ,

whereψ(r) = (∑∞
i=1 min{r,λi})1/2, V = {t f : 0≤ t ≤ 1, f ∈ F} and Vr = { f ∈V : E f = r}.
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For example, ifλi = e−i then it is easy to verify that for every 0< r < 1,

∞

∑
i=1

min{r,λi} ≤ cr log(2/r) ,

wherec is a suitable absolute constant. Thus,‖µn−µ‖Vr ≤ r/4 for r ≥ C logn
n , and by Theorem 1.2,

with probability at least 1− 1
nc ,

Eµ f̂ ≤max

{
En f̂ ,

C logn
n

}
≤ C logn

n
,

where the last inequality holds because the empirical expectation of the empirical minimizer is
non-positive.

It is interesting to compare the resulting error bound to the estimates established by Zhang
(2003), who showed that for a large family of convex loss functions, the error rate of the same
problem we tackle iscr, wherec is a constant depending on some parameters of the problem (e.g.,
on ‖K‖∞), and thus under very mild assumptions can be considered as an absolute constant, while
the factorr is determined as follows. LetDλ = ∑∞

i=1 λi/(λi + λ), and letr be such thatDr ≥ c1 and
r/Dr ≥ c2t/n, wherec1 andc2 are constants with similar properties toc. Then, with probability
larger than 1−4exp(−t), Eµ f̂ is bounded bycr. It is easy to check that for everyλ > 0,

ψ2(λ)
2λ

≤ Dλ ≤
ψ2(λ)

λ
.

Therefore, the conditions onr are equivalent to

ψ(r) ≥ k1
√

r , n−1/2ψ(r)≤ r/k2
√

t,

and Zhang’s result can be recovered by the previous theorem, with a slightly different tail esti-
mate. The difficulty in Zhang’s approach is that the proof of the error bound depends heavily on the
structure of the Hilbert space, while here, the error bound follows from completely general princi-
ples, and the only place where the geometry of the class appears is in the estimate of the localized
averages.

Note that the bound we obtain on the localized averages is not data-dependent. It differs from the
worst case analysis which can be established via the shattering dimension, (see, e.g., Mendelson and
Schechtman, 2003), because the underlying measure has a strong influence on the bound; indeed, a
change of measure yields a different integral operator and thus a different spectrum. Data dependent
error bounds, which involve the spectrum of the kernel matrix(K (Xi,Xj))

n
i, j=1 where(Xi)n

i=1 are
independent random variables distributed according toµ were recently developed by Bartlett et al.
(2003) (see also Lugosi and Wegkamp, 2003).

Let us mention that the learning model we investigate is not the only one used in the context of
kernel classes. In the so-called regularized loss method, rather than restricting the base class to the
unit ball of the reproducing kernel Hilbert space, a larger loss is assigned to functions which have a
large norm in that space. This model will not be discussed in this article, but we refer the reader to
Cucker and Smale (2003) for new results in that direction which are based on entropy estimates.

The article is organized as follows. Firstly we show that for a kernel classHK,

E sup
{ f∈HK :E f 2≤r}

∣∣∣∣∣
n

∑
i=1

εi f (Xi)

∣∣∣∣∣ ,
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is determined by the spectrum of the integral operator associated with the kernel (and the measure
µ according to which(Xi)n

i=1 are distributed). Next, we prove a general result which bounds the
localized averages of the squared loss class in terms of those of the base class, as long as the latter
is convex. In particular, ifF is the squared loss class associated with a kernel class, we estimate
Esup{ f∈F :E f≤r} |∑n

i=1 εi f (Xi)|. Finally, we use the technique ofpeelingto bound the localized aver-
ages of the star-shaped hull of the loss class, which yields the main result, as well as the promised
error bound.

1.1 Technical Preliminaries

Below, we present some preliminary results on empirical, Rademacher and Gaussian processes we
require in the sequel.

For T ⊂ R
n, let {Xt : t ∈ T} be the Gaussian process indexed byT whose covariance structure

is given by the inner product inRn. Hence, for everyt ∈ T, Xt = ∑n
i=1giti , where(gi)n

i=1 are
independent standard Gaussian variables.

The following comparison theorem for Gaussian processes originated in the work of Slepian,
and is due to Fernique (see Pisier, 1989). We formulate the claim only for a finite indexing set, but
it can be easily extended to more general indexing sets.

Lemma 1.4 Let{Zi ,1≤ i ≤m} and{Yi ,1≤ i ≤m} be two Gaussian processes which satisfy that,
for every i, j,

‖Zi −Zj‖2 ≤ ‖Yi −Yj‖2.

Then

Esup
i

Zi ≤ Esup
i

Yi .

Let µ be a probability measure onΩ and set(Xi)n
i=1 to be independent random variables dis-

tributed according toµ. Denote ∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
F

= sup
f∈F

∣∣∣∣∣
n

∑
i=1

εi f (Xi)

∣∣∣∣∣ ,
where(εi)n

i=1 are independent Rademacher random variables. Similarly, one can define‖∑n
i=1 giδXi‖F

where(gi)n
i=1 are, as above, independent standard Gaussian variables.

The following is a well known symmetrization claim showing thatE‖µ−µn‖F andE‖∑n
i=1εiδXi‖F

are essentially equivalent.

Lemma 1.5 (van der Vaart and Wellner, 1996, Milman and Schechtman, 1986) Let µ be a proba-
bility measure and set F to be a class of functions. Then

E‖µn−µ‖F ≤ 2
n

E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
F

≤ 4E‖µn−µ‖F +2

∣∣∣∣∣sup
f∈F

Eµ f

∣∣∣∣∣ ·Eε

∣∣∣∣∣1n
n

∑
i=1

εi

∣∣∣∣∣ ,
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and

E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
F

≤CE

∥∥∥∥∥
n

∑
i=1

giδXi

∥∥∥∥∥
F

,

where C is an absolute constant.

We end this introduction with two concentration inequalities which are at the heart of the proofs
we present.

The first is the well known Bernstein’s inequality (Massart, 2000, van der Vaart and Wellner,
1996).

Theorem 1.6 Let µ be a probability measure onΩ and let X1, ...,Xn be independent random vari-
ables distributed according to µ. Given a function f: Ω →R, set Z= ∑n

i=1 f (Xi), let b= ‖ f‖∞ and
put v= nEµ f 2. Then,

Pr
{|Z−EµZ| ≥ x

}≤ 2e−
x2

2(v+bx/3) .

The following is a version of Talagrand’s inequality, which is a “functional” version of Theorem
1.6. The version we use is from Bousquet (2002).

Theorem 1.7 Let F be a class of functions on a probability space(Ω,µ), such that for every f∈ F,
‖ f‖∞ ≤ 1 andEµ f = 0. Let X1, ...,Xn be independent random variables distributed according to µ
and set

Z = sup
f∈F

∣∣∣∣∣
n

∑
i=1

f (Xi)

∣∣∣∣∣ .
If σ2 ≥ nsupf∈F var( f ) and v= nσ2 +2EZ, then for every x> 0

Pr ({Z≥ EZ+x})≤ exp
(
−vh

(x
v

))
,

and
Pr ({Z≤ EZ−x})≤ exp

(
−vh

(x
v

))
,

where h(x) = (1+x) log(1+x)−x. In particular,

Pr ({|Z−EZ| ≥ x})≤ 2exp

(
− x2

2v+ 3x
2

)
.

Throughout this article, all absolute constants are denoted byC or c. Their value may change
from line to line, or even within the same line. We denote byCb a constant which depends only on
b.

2. The Localized Averages of a Kernel Class

In this section we investigate the connections between the localized averages of a kernel class (with
respect to a fixed probability measureµ) and the eigenvalues of the integral operatorTK : L2(µ) →
L2(µ) associated with the kernel andµ, which is defined by

(TK f ) (x) =
∫

K(x,y) f (y)dµ(y).
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Theorem 2.1 There are absolute constants C and c for which the following holds. Let(λi)∞
i=1 be

the non-increasing sequence of eigenvalues of the integral operator TK, put HK to be the unit ball of
the reproducing kernel Hilbert space, and for r> 0 set

ψ(r) =

(
∞

∑
j=1

min{λ j , r}
) 1

2

.

If λ1 ≥ 1/n, then for every r≥ 1/n,

cψ(r) ≤ 1√
n

E sup
{ f∈HK : Eµ f 2≤r}

∣∣∣∣∣
n

∑
i=1

εi f (Xi)

∣∣∣∣∣≤Cψ(r),

where(Xi)∞
i=1 are independent, distributed according to µ.

The first part of the proof will be to show that all theLp norms of the random variable
supf∈F |∑n

i=1 εi f (Xi)| are equivalent. This equivalence follows from a general principle based on
concentration.

Lemma 2.2 For every b> 0 there exists a constant cb for which the following holds. Let F be a
class of functions bounded by b, setσ2

F = supf∈F var( f ) and assume that nσ2
F ≥ 1. Then,

E‖µn−µ‖F ≥
cbσF√

n
.

Proof. Without loss of generality, assume thatb = 1 and thatσ2
F = var(g) for someg∈ F . LetY =

∑n
i=1(g(Xi)−Eg) and setv = nvar(g). By Bernstein’s inequality there exists an absolute constant

K such that
EY2χ{|Y|≥K

√
v} ≤

v
4
,

whereχ{·} denotes the indicator function. Indeed, sincev = n·var(g)≥ 1, then for every integerk,

EY2χ{|Y|≥k
√

v} =
∞

∑
m=k

EY2χ{{m√v≤|Y|≤(m+1)
√

v} ≤ 2v
∞

∑
m=k

(m+1)e−c′m,

wherec′ is an absolute constant. Thus, the assertion follows by takingk sufficiently large. Since
EY2χ{|Y|≤√v/2} ≤ v/4 then

v = EY2 ≤ v
4

+EY2χ{√v/2≤|Y|≤K
√

v}+
v
4

≤ v
2

+K2v·Pr

({√
v

2
≤ |Y| ≤ K

√
v

})
,

and thus

Pr

({
‖µn−µ‖F ≥ σF

2
√

n

})
≥ Pr

({√
v

2
≤ |Y| ≤ K

√
v

})
≥ c,

which implies that

E‖µn−µ‖F ≥ cσF√
n

for another absolute constantc.
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Lemma 2.3 Let Z be a nonnegative random variable which satisfies that there is some constant c,
such that for every integer m,

Pr ({|Z−EZ| ≥mEZ})≤ 2e−cm.

Then, for every1 < p < ∞ there is a constant cp which depends only on p and c, such that

cp(EZp)
1
p ≤ EZ≤ (EZp)

1
p .

Proof. By Hölder’s inequality, theLp norm is larger than theL1 norm, and the upper bound is
evident. For the lower one, fix some 1< p < ∞ and seta = EZ. Clearly,

EZp = EZpχ{Z<a}+
∞

∑
m=0

EZpχ{(m+1)a≤Z<(m+2)a}.

SinceZ has an exponential tail,Pr ({Z≥ (m+1)a})≤ 2e−cm, and thus

EZp ≤ ap +2ap
∞

∑
m=0

(m+2)pe−cm,

proving thatcp(EZp)1/p ≤ EZ.

Corollary 2.4 For every1 < p < ∞ there is a constant cp depending only on p for which the fol-
lowing holds. Let F be a class of functions bounded by1 and let n be such thatσ2

F ≥ 1/n, where
σ2

F = supf∈F var( f ). Then, for every1≤ p < ∞

cp

(
E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
p

F

) 1
p

≤ E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
F

≤
(

E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
p

F

) 1
p

Proof. Denote byE the expectation with respect to the product measureνn = (ε⊗µ)n, setYi =
(εi ,Xi) put u(Yi) = εi f (Xi) and let

Z = sup
u∈U

∣∣∣∣∣
n

∑
i=1

u(Yi)

∣∣∣∣∣ .
Observe that for everyu∈U , Eu = 0, and that by Theorem 1.7

Pr ({|Z−EZ| ≥ x})≤ 2exp

(
− x2

2v+ 2EZ
3

)
,

for anyv≥ nσ2
U +2EZ. SinceσU ≥ σF , then by Lemma 2.2 and Lemma 1.5,

1≤ nσ2
F ≤ nσ2

U ≤ c(EZ)2,

and thus
Pr ({|Z−EZ| ≥mEZ})≤ 2exp

(−c′m
)

wherec′ is an absolute constant. Now the assertion follows from Lemma 2.3.
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Proof of Theorem 2.1Let HK be the kernel class and setHr = { f : f ∈ HK , E f 2 ≤ r}. Note that
the indexing setHr is an intersection of a ball and an ellipsoid, making the computation of theL2

norm of supf∈Hr
|∑n

i=1 εi f (Xi)| possible. Indeed, ifE andE ′ are ellipsoids with the same principal
directions and axes(ai)∞

i=1 and(bi)∞
i=1 respectively, then the ellipsoidB whose principal directions

are the same asE and its axes are(min{ai ,bi})∞
i=1 satisfies thatB ⊂ E ∩E ′ ⊂ √

2B . Therefore,
one can replace the setE ∩E ′ indexing the Rademacher process byB , losing only a multiplicative
factor. In our case, denoteB(r) = { f |Eµ f 2 ≤ r}. It follows that f ∈HK is also inB(r) if and only if
its representing vectorβ satisfies that∑∞

i=1 β2
i λi ≤ r. Hence, as a subset of`2,

HK ∩B(r) =

{
β

∣∣∣∣∣
∞

∑
i=1

β2
i ≤ 1,

∞

∑
i=1

β2
i λi ≤ r

}
,

implying that if B ⊂ `2 is defined as{β|∑∞
i=1µiβ2

i ≤ 1}, whereµi = (min{1, r/λi})−1, then

B ⊂Hr ⊂
√

2B .

Next, one can compute theL2 norm of the supremum of the process indexed byB . Indeed,

Esup
β∈B

∣∣∣∣∣
〈

β,
n

∑
j=1

ε jΦ(Xj)

〉∣∣∣∣∣
2

= Esup
β∈B

∣∣∣∣∣
〈

∞

∑
i=1

√
µiβiei ,

∞

∑
i=1

√
λi

µi

(
n

∑
j=1

ε jφi(Xj)

)
ei

〉∣∣∣∣∣
2

= E

∞

∑
i=1

λi

µi

(
∞

∑
j=1

ε jφi(Xj)

)2

= Eµ∑
i, j

λi

µi
φ2

i (Xj) = n
∞

∑
i=1

λi

µi
.

Finally, to show the theL1 and theL2 norms of supf∈Hr
|∑n

i=1εi f (Xi)| are equivalent, it suffices to
prove that

sup
f∈Hr

var(ε · f (X)) = sup
f∈Hr

E f 2 ≥ 1
n
,

whereε is a Rademacher random variable andX is distributed according toµ. To that end, letφ1 be
the eigenfunction ofTK associated with the largest eigenvalueλ1, and setg =

√
TKφ1 = λ1φ1. It is

evident thatg∈ HK and thatEµg2 = λ1 ≥ 1/n. If h = tg for an appropriate selection of 0< t ≤ 1,
thenh∈ HK as a convex combination ofg and 0, andEµh2 ≤ r, implying that supf∈Hr

E f 2 ≥ 1/n.
Thus, all theLp norms of‖∑n

i=1 εiδXi‖B are equivalent, which completes the proof.

Remark 2.5 Note that the assumption thatλ1≥ 1/n is needed only for the lower bound. The upper
estimate holds without that assumption.

3. The Localized Averages of Loss Classes

Here, we establish bounds on the localized averages of the loss class associated with a kernel class
using the main result of the previous section. In fact, the estimate we present is completely general,
and is not restricted to kernel classes, but for arbitraryp-loss classes associated with a convex base
class for 1< p< ∞. For the sake of simplicity, the results are formulated and proved for the squared
loss case. Let us mention that all the assertions in this section hold for the agnostic (noisy) learning
scenario for the squared loss, and with the same proofs.
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Formally, letH be a convex class of functions bounded byb and setT : Ω → [0,b] to be the
target function. For everyh ∈ H, recall that the squared loss function associated withh is `h =
(h−T)2− (PHT−T)2, wherePHT is the metric projection onT ontoH (that is, the nearest point
to T in H with respect to theL2(µ) norm), and that the loss class isF = {`h : h∈H}.

The first lemma we present is standard and its proof is omitted.

Lemma 3.1 Let F be the squared loss class associated with a target T and a convex class H, and
set b= max{suph∈H ‖h‖∞,‖T‖∞}. For everyσ ∈ Ωn, infh∈H Eσ`h ≤ 0 and for every h,h′ ∈ H and
any x∈ Ω,

(`h− `h′)
2(x) ≤ 16b2(h−h′)2(x).

The second preliminary result we require was proved by Mendelson (2002) for a more general
class of loss functionals, based on the notion of uniform convexity.

Lemma 3.2 Let H, T and b be as in Lemma 3.1. Then there are constants Cb, C′
b and C′′b(which

depend only on b) such that for every h∈ H,

E`2
h ≤Cb‖h−PHT‖2

L2(µ) ≤C′
bE`h.

In particular, for every r> 0,

{h : E`h ≤ r} ⊂
{

h : ‖h−PHT‖2
L2(µ) ≤C′′

br
}

.

Now, one has to show that the expectation of supremum of the Gaussian process indexed by
{`h : E`h ≤ r} can be controlled using the localized Gaussian averages associated withH.

Theorem 3.3 Let F, H, T and b as in Lemma 3.1. Then, there are constants Cb and C′b which
depend only on b, such that for every r> 0,

E sup
{h∈H:E`h≤r}

∣∣∣∣∣
n

∑
i=1

gi`h(Xi)

∣∣∣∣∣≤CbE sup
{h∈2H:Eh2≤C′

br}

∣∣∣∣∣
n

∑
i=1

gih(Xi)

∣∣∣∣∣ .
Proof. For every fixedσ = (x1, ...,xn) we will apply Lemma 1.4 and compare the process indexed
by

{(`h(x1), ..., `h(xn))}
whereh ranges overV = {h∈ H : E`h ≤ r}, and the process indexed by

V ′ =
{
(h(x1), ...,h(xn)) : h∈ 2H,Eh2 ≤Cr

}
for an appropriate absolute constantC. By Lemma 3.1, for everyh,h′ ∈ H,

n

∑
i=1

(`h(xi)− `h′ (xi))
2 ≤Cb

n

∑
i=1

(h−h′)2(xi)

= Cb

n

∑
i=1

(
(h−PHT) (xi)−

(
h′ −PHT

)
(xi)
)2

,
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and thus, by Lemma 1.4

Esup
h∈V

∣∣∣∣∣
n

∑
i=1

gi`h(xi)

∣∣∣∣∣≤CbEsup
h∈V

∣∣∣∣∣
n

∑
i=1

gi(h−PHT)(xi)

∣∣∣∣∣ .
Applying Lemma 3.2,V ⊂ {h ∈ H : E(h−PHT)2 ≤ C′

br}, and by settingV ′′ = {h−PHT : h ∈
H, E(h−PHT)2 ≤C′

br} it follows that

Esup
h∈V

∣∣∣∣∣
n

∑
i=1

gi(h−PHT)(xi)

∣∣∣∣∣≤ E sup
u∈V′′

∣∣∣∣∣
n

∑
i=1

giu(xi)

∣∣∣∣∣ .
To complete the proof, observe thatH is convex and symmetric, and thush− PHT ∈ 2H, and
V ′′ ⊂V ′.

Theorem 3.4 Let HK be a kernel class, put T to be a target function bounded by1 and set F to
be the squared loss class. Let µ be a probability measure and put(λi)∞

i=1 to be the sequence of
eigenvalues of the integral operator associated with K and µ (arranged in a non-increasing order).
Then, for every r≥ 1/n,

1
n

E sup
{ f∈F :E f≤r}

∣∣∣∣∣
n

∑
i=1

εi f (Xi)

∣∣∣∣∣≤ C√
n

(
∞

∑
i=1

min{cr,λi}
)1/2

,

where C and c are constants which depend only on‖K‖∞.

Proof. Using Lemma 1.5, up to an absolute multiplicative constant, the Gaussian averages upper
bound the Rademacher ones. Hence, it suffices to estimate the localized Gaussian averages of the
loss class, which by Theorem 3.3, are bounded by

CE sup
{h∈2HK :Eh2≤cr}

∣∣∣∣∣
n

∑
i=1

gih(xi)

∣∣∣∣∣= (∗),

whereC andc are constants depending only on the range of functions in the kernel class, and thus,
only on‖K‖∞. Since 2HK is an ellipsoid whose axes are(2λi)∞

i=1, and since theL1 norm is upper
bounded by theL2 norm,

(∗)≤C


E sup

{h∈2HK :Eh2≤cr}

∣∣∣∣∣
n

∑
i=1

gih(xi)

∣∣∣∣∣
2



1/2

,

which can be estimated just as in the proof of Theorem 2.1.

4. Estimating the Loss

Finally, we are in a position to bound the error of the empirical minimization algorithm for a base
class which is a kernel class. By Lemma 3.2, the squared loss class has Bernstein type 1 with a
constant depending only supf∈F ‖ f‖∞. In particular, ifF is the squared loss class associated with
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the kernel classHK and the targetT, then the star-shaped hull ofF and 0, denoted byV has Bernstein
type 1 with a constant depending only on‖K‖∞.

Note that

Vr = { f ∈V : E f = r}=
{

r f
E f

: f ∈ F, E f ≥ r

}
, (4.1)

and set

φ(r) = E sup
{ f∈F :E f≤r}

∣∣∣∣∣
n

∑
i=1

gi f (Xi)

∣∣∣∣∣ .
To estimate‖µn−µ‖Vr we use the notion of peeling.

Lemma 4.1 For every t> 1,

E‖µn−µ‖Vr ≤
C
n

m

∑
j=1

φ(t j+1r)
t j ,

where m is the largest integer for which tj r ≤ supf∈F E f and C is an absolute constant.

Proof. Note that by (4.1),

E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
Vr

= E sup
{ f∈F:E f≥r}

∣∣∣∣∣
n

∑
i=1

εi
r

E f
f (Xi)

∣∣∣∣∣
=

m

∑
j=0

E sup
{ f∈F:t j r≤E f≤t j+1r}

∣∣∣∣∣
n

∑
i=1

εi
r

E f
f (Xi)

∣∣∣∣∣
≤

m

∑
j=0

1
t j E sup

{ f∈F :t j r≤E f≤t j+1r}

∣∣∣∣∣
n

∑
i=1

εi f (Xi)

∣∣∣∣∣≤
m

∑
j=0

1
t j φ(t j+1r).

and the claim follows because

E‖µn−µ‖Vr ≤
2
n

E

∥∥∥∥∥
n

∑
i=1

εiδXi

∥∥∥∥∥
Vr

.

Combining Lemma 4.1 with Theorem 3.4, we obtain our main result, which is the following
estimate on the localized averages of the star-shaped hull of a kernel loss class.

Theorem 4.2 There are absolute constants c and C for which the following holds. Let K be a kernel
such that‖K‖∞ ≤ 1, and let(λi)∞

i=1 be the spectrum of TK (arranged in a non-increasing order). Set
HK to be the kernel class, let T: Ω → [0,1] and put V to be the star-shaped hull of squared loss
class. Then, for every r≥ 1/n,

E‖µ−µn‖Vr ≤
C√
n

ψ(r),

whereψ(r) = (∑∞
i=1 min{r,λi})1/2 and Vr = { f ∈V : E f = r}.
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Proof. By Lemma 4.1 and Theorem 3.4,

E‖µn−µ‖Vr ≤
C√
n

∞

∑
i=1

4− jψ(c4 j+1r).

Observe that for everyr > 0 andα≥ 1, ψ(αr)≤√
2αψ(r), from which our assertion easily follows.

To that end, recall thatDr = ∑∞
i=1 λi/(r + λi), and that(rDr)1/2 ≤ ψ(r) ≤ (2rDr)1/2. Clearly, for

α ≥ 1, ψ(αr) ≤√
2α(rDr)1/2 ≤√

2αψ(r), as claimed.

References

P.L. Bartlett, O. Bousquet, and S. Mendelson. Localized Rademacher complexities. 2003. Preprint.

P.L. Bartlett and S. Mendelson. Empirical risk minimization. 2003. Preprint.

O. Bousquet.Concentration inequalities and empirical processes theory applied to the analysis of
learning algorithms. PhD thesis, Ecole Polytechnique, Paris, 2002.

P. Cucker and S. Smale. On the mathematical foundations of learning.Bulletin of the AMS, 39(1):
1–49, 2002.

P. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the bias-
variance problem.Foundations of Computational Mathematics, 2(4):413–428, 2003.

G. Lugosi and M. Wegkamp. Complexity regularization via localized random penalties.Annals of
Statistics, 2003. to appear.

P. Massart. About the constants in Talagrand’s concentration inequality for empirical processes.
Annals of Probability, 28(2):863–884, 2000.

S. Mendelson and G. Schechtman. The shattering dimension of sets of linear functionals.Annals of
Probability, 2003. to appear.

S. Mendelson. Improving the sample complexity using global data.IEEE Transactions on Informa-
tion Theory, 48(7):1977–1991, 2002.

V.D. Milman and G. Schechtman.Asymptotic theory of finite dimensional normed spaces. Lecture
Notes in Mathematics 1200. Springer, 1986.

G. Pisier.The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press,
Cambridge, 1989.

A. W. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes. Springer, 1996.

T. Zhang. Effective dimension and generalization of kernel learning. In S. Thrun S. Becker and
K. Obermayer, editors,Advances in Neural Information Processing Systems 15, pages 454–461.
MIT Press, Cambridge, MA, 2003.

771


